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Executive Summary 
Significant progress was made in all sub-projects and this summary hits only the high points of work done in this 
6th quarter . Detailed information can be found in each sub-project report.  Of particular note was the pea 
research on variety yield, variety protein content, protein content measurement and water use efficiency.  
These factors are important to the local adoption in the various areas of MT and to development of a pea 
protein fractionation plant in MT. Of note is the variety Nette 2010 which was amongst the highest yielding at 
most test locations and had the highest water use efficiency. Both factors are critical to using peas in continuous 
cropping scenarios as compared to crop fallow. Research on determining pea protein content which will be 
important to pea producers delivering to a protein fractionation plant has shown that NIR equipment now used 
in many grain elevators can reliably determine protein content. Research in this project and in prior research has 
shown that protein content is related most strongly to location environmental factors and less so to genotype. 
However, nitrogen available from applied or residual fertilizer or from Rhizobial inoculants plays an important 
role. In this regard, the use of granular inoculants compared to peat –powder-based inoculants appear to be 
more effective in supplying nitrogen to the pea plant and thus supporting increased protein content.  Adequate 
phosphorous and available sulfur fertility is also critical. Thus we are beginning to understand how to maximize 
both yield and protein content. 
 
Also relating to nitrogen, work in the Peter’s lab has progressed on the bacterium, Azotobacter vinelandii, which 
can fix N on non-legume crops. Work is progressing on both rhizosphere microflora associations and effects of 
various elements on pea yield. This work has been slowed be3cause of available $ and we have recently begun 
the process to reallocate unused $ from other projects to complete this work. 
 
The cover crop project has yielded a wealth of data and while warm season crops may out yield cool season 
mixes, they use more water thus limiting their use in continuous cropping scenarios. The yield of the best cool 
season mixes which are terminated in July produced very high quality hay and forage and clearly demonstrated 
the ability to produce revenues of ~$120.00/A. Thus, these cool season cover crops could be used in continuous 
cropping scenarios without negatively affecting winter wheat yields. It should be noted that the completion of a 
4-year experiment in part supported by this funding was done under normal annual rainfall condition but not 
drought. 
 
The precision agriculture component of this project has made considerable progress on incorporating weed 
management (see data from Rew and Jha in this report) and in developing the software to exploit available 
yield, weed distribution, protein, environmental and other data and develop optimal  net return models that 
producers can use. These models are based on machine learning and artificial intelligence and it is likely the 
software developed will have significant commercial value. Work on hyperspectral optics for use in detecting 
herbicide resistant weeds and in detecting and mapping various weeds in crops has continued cooperatively in 
the Jha and Shaw laboratories and a provisional patent application has been filed. 
 
The durum breeding project is moving along as expected and the line MT112219 was identified a high yielding 
(higher than several commercially used varieties). While this line had lower protein than several commercially 
used varieties this line had the highest milling yield and was satisfactory in other pasta quality factors.  
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Work has continued on the effects of availability of pea or cover crop nectar to wheat sawfly parasites and their 
influence on sawfly damage. While data is still being developed it appears that nectar availability is important to 
sawfly parasitism it is not a reliable commercial control. 
 
A 10-minute film detailing this project has been developed and can be viewed at https://youtu.be/7kvXqS8YiHo. 
Work on the participatory research networks and economic analysis is underway. 
 
Hiring 

• Employees at the CARC, NWARC and SARC have been reallocated to assist with projects at the centers 
this past quarter. 
 

Expenditures 
• Total Personnel Services:  $186,132.24 
• Total Operations:  $12,807.19 

 
 
Pulse Crop Research subproject of the Agriculture MREDI Grant 
41W211 – Principal Investigator: Chengci Chen; Email: cchen@montana.edu 
Co-investigators: Yesuf Mohammed, Maninder Walia, Perry Miller, Peggy Lamb, Jessica Torrion, Zachariah 
Miller, Kent McVay, Patrick Carr 
 
Progress towards milestones 
1. Multi-location pea variety evaluation for yield, water use, and water use efficiency 
Precipitation amount and distribution have substantial influence on crop production particularly in dryland 
farming. Farmers in Montana practice summer fallow to recharge soil moisture for the next crop to minimize 
drought effect on yield due to erratic rainfall. Replacing summer fallow with dry pea can enhance economic and 
agronomic benefits from intensification. But some varieties of dry pea could deplete more soil moisture than 
others thus resulting less residual soil moisture in the profile for the next crop. Therefore, this project component 
evaluated six dry pea varieties across Montana to evaluate their water use and water use efficiency. Water used 
in this report is the sum of initial soil moisture at planting and precipitation received during the growing season 
minus the residual soil moisture that was measured immediately following harvesting. The soil moisture was 
measured to a depth of 36 inch. Precipitation received between the month of April and August including were 
considered as input. Then, water use efficiency was calculated as the amount of grain produced per unit of water 
used. All the water lost during the growing period are assumed as transpiration loss. This report presented water 
used (WU) and water use efficiency (WUE) of six dry pea varieties at diffident locations in Montana.  
 
Table 1. Mean grain yield for each variety and locations in 2016 at different locations in Montana 

Varieties 
Location    

Bozeman Conrad Corvallis 
irri. Creston Havre Huntley 

dry 
Huntley 
irri. Moccasin Sidney 

dry 
Sidney 
irri. Richland Variety 

means 
Delta 2265 3933 2519 5143 2132 829 1535 1406 3629 4353 5459 3018 

Hampton 2408 3923 2270 5083 2797 773 1884 1445 3629 4103 4023 2940 

Jet Set 2560 3350 3066 5570 2636 851 1511 1422 3812 4111 6102 3181 

Majoret 2067 2367 1711 5024 2459 693 1300 1265 3819 4407 4897 2728 

Navarro 2167 4283 2555 4364 2305 467 1142 1279 3765 3825 5769 2902 

Nette 2010 2399 5329 3240 6845 2508 594 1814 1470 4039 4459 6486 3562 

https://youtu.be/7kvXqS8YiHo
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Means 2310 3929 2530 5338 2472 701 1530 1380 3782 4209 5455   

P-values 0.2641 0.0183 0.0009 0.0016 0.0008 0.3760 <0.0001 0.0010 0.8150 0.1843 0.0003   

LSD (0.05) Ns 1292 559 818 217 Ns 159 89 Ns Ns 721   

CV (%) 9.32 23.27 15.61 10.84 6.22 30.22 7.36 4.58 8.98 7.36 9.35   

Bold font indicated the highest yielding variety for a location (within a column). irri. = irrigated (the experiment was conducted 
with supplementary irrigation). Ns= non-significant. 

 
Table 2. Analysis of variance table showing the effects of variety, location and their interaction on water use (WU) of six dry pea varieties.  

Source DF Mean Square F-Value Pr > F 
Replication 3 1.93192 2.72 0.0488 
Variety 5 0.79715 1.12 0.3544 
Location 5 614.809 864.37 <0.0001 
Variety*Location 25 0.57595 0.81 0.7211 

 
Table 3. Mean water used (WU) (in inch) for each variety at different locations in 2016  

Varieties 
Location/ WU  

Sidney dry Sidney Irri. Creston* Havre Huntley dry Conrad 
Delta 10.45 17.98 4.43 17.37 9.87 9.39  
Hampton 10.65 16.03 4.67 17.57 9.66 9.25  
Jetset 11.00 17.94 4.60 17.78 9.73 9.74  
Majoret 10.46 17.90 4.32 17.56 9.41 9.36  
Navarro 10.77 18.19 4.42 17.27 9.45 9.82  
Nette 2010 10.57 16.80 4.31 17.41 9.64 9.65  
Location means 10.65 17.47 4.46 17.49 9.63 9.53  
P-values 0.4187 0.2626 0.4987 0.7764 0.6972 0.6683  
LSD (0.05) NS NS NS NS NS NS  
CV (%) 3.83 8.19 6.80 2.96 3.94 6.11  

Irri. = irrigated (the experiment was conducted with supplementary irrigation). NS = non-significant. *there was a 
underground channel that constantly supplied water, therefore, this site is abnormal 
 
Table 4. Analysis of variance table showing the effects of variety, location and their interaction on water use efficiency (WUE) of six dry 
pea varieties.  

Source DF Mean Square F Value Pr > F 
Replication 3 26.0287 7.88 <0.0001 
Variety 5 17.2997 5.24 0.0003 
Location 5 1203.26 364.2 <0.0001 
Variety*Location 25 8.64549 2.62 0.0004 

 
Table 1 presents the yield of six pea varieties grown at 11 environments in 2016, which has been reported in 
Quarter 5 project report. Table 2 shows the statistical analysis for the effects of variety and location on water 
use of peas. Results indicate that total water use did not differed significantly among the six pea varieties 
(p=0.35). From the water use data in Table 3, we can see total water use varied greatly among the locations. 
Creston site only consumed ~4.5 inches water, yet produced over 5,000 lbs of peas. This site was abnormal, 
because there was an underground channel which provide constant below ground water supply, therefore, the 
pea yield was exceptionally high.  Statistical analysis in Table 4, showing significant different among varieties and 
locations in water use efficiency (WUE). As mentioned above, Creston site is abnormal, therefore, the WUE is 
exceptionally high, while Huntley dryland site was hail damaged and produced very low yield, thus resulting very 



low WUE. However, Havre site consumed similar amount of water as Sidney irrigated site, yet had much lower 
WUE than Sidney irrigated site. The reason is that Havre site received big rain storms in late growing season, 
which provide big amount of water but did not help pea yield (too late). Therefore, timely supply of water is 
critical for higher pea yield and WUE. The variety Nette 2010 resulted in the highest WUE than other varieties. 
 
Table 5.  Mean water use efficiency (WUE) (in bu/inch) for each variety at different locations in 2016.  

Varieties 
Location/ WUE  

Sidney dry Sidney Irri. Creston* Havre Huntley dry* Conrad 
Delta 5.80 4.04 19.43 0.32 1.41 6.96  
Hampton 5.69 4.44 18.23 0.41 1.34 7.09  
Jetset 5.80 3.81 20.40 0.39 1.46 5.82  
Majoret 6.07 4.11 19.45 0.36 1.23 4.24  
Navarro 5.82 3.51 16.98 0.35 0.82 7.30  
Nette 2010 6.36 4.47 26.90 0.37 1.02 9.29  
Location means 5.92 4.06 20.23 0.37 1.21 6.78  
P-values 0.5141 0.1730 0.0011 0.0056 0.3254 0.0213  
LSD (0.05)        NS         NS 3.84 0.04           NS 2.61  
CV (%) 8.91 13.45 12.58 7.59 30.82 25.55  

Irri. = irrigated (the experiment was conducted with supplementary irrigation). NS= non-significant. *Creston site had a 
underground channel that provided water to the crop, and the Huntley dryland site was hail damaged. 

 
Table 6. Analysis of variance showing the effects of variety, location and their interaction on residual soil moisture content of six dry pea 
varieties.  

Source DF Mean Square F Value Pr > F 
Replication 3 8.9 2.21 0.0913 
Variety 5 5.2 1.29 0.2751 
Location 5 552.8 137.69 <0.0001 
Variety*Location 25 3.7 0.93 0.5712 

 
 
Table 7. Mean residual soil moisture after harvesting (in inch) for each variety at different locations in 2016.  

Varieties 
Location/ Residual soil moisture after harvest (inch) Variety 

means Sidney dry Sidney Irri. Creston Havre Huntley dry Conrad 
Delta 4.5 8.5 5.0 6.1 4.0 4.2 5.4 
Hampton 4.3 10.5 4.7 5.9 4.2 4.3 5.7 
Jetset 3.9 8.6 4.8 5.7 4.1 3.9 5.2 
Majoret 4.5 8.6 5.1 5.9 4.4 4.2 5.5 
Navarro 4.2 8.3 5.0 6.2 4.4 3.8 5.3 
Nette 2010 4.4 9.7 5.1 6.0 4.2 3.9 5.6 
Location means 4.3 9.1 4.9 5.9 4.2 4.1   
P-values 0.4211 0.2619 0.5054 0.7733 0.6932 0.6689   
LSD (0.05) NS NS NS NS NS NS   
CV (%) 9.52 15.81 6.14 8.93 8.98 14.32   

 
The residual soil moisture left after harvesting was calculated for each variety and location. Analysis of variance 
showed that the soil moisture left after harvesting was statistically the same for all varieties since ANOVA did not 
show any significant differences (Table 6). The higher WUE recorded for some varieties (Table 5) without affecting 
the residual soil moisture is important findings in this study. The different locations differ in the residual soil 



moisture content probably due to variation in precipitation or irrigation (Sidney Irri) received at each location 
before or after harvest (Table 7).  
 
2. Using Vis-NIRS reflectance spectrum to predict protein of green and yellow peas (whole and powder) 

on spectra wiz spectrometer 
 
Progress towards milestones 
The yellow and green whole peas and powder collected from the experiments located at various research 
locations has been scanned through visual spectral (Figures 1-4). 
 

 

 
Those pea samples were also run through LICO Nitrogen Analyzer to analyze nitrogen contents.  
 
Future Work: The data will be analyzed and a prediction model will be built to predict protein content for green 
and yellow peas. One manuscript will be written on protein concentration prediction by visible and near infrared 
reflectance spectroscopy (Vis-NIRS) in whole and ground peas. 

Fig. 1: Yellow peas powder Fig. 2: Green peas powder 

Fig. 3: Yellow whole peas  Fig. 4: Green whole peas  



Hiring 
• No additional hires in Quarter 6. 

 
Expenditures 

• Total Personnel Services:  $70,801.90 
• Total Operations:  $19,416.43 

 
 
Soil Microbiology and Pea Protein subproject of the Agriculture MREDI Grant 
1) 41W212 – Principal Investigator:   Perry Miller, Email: pmiller@montana.edu  
 
Progress towards milestones 
The following progress has been made: 
 

A. Further investigation is underway to determine if protein variation is influenced by sample size and to 
determine if protein variation is similar in yellow pea and wheat. 

B. A review has been written emphasizing how management factors common across Montana have 
influenced pea protein. 

C. Yellow pea samples from the 2016 growing season are now being acquired.  
 

A. Protein variation in yellow pea vs. wheat and effect of sample size on protein measurements 
 
When validating the factory calibration on the FOSS Infratec 1241, we found that the average difference 
between measured and predicted protein content was 1.02 % for whole-seed samples. Other studies have 
shown that the standard error of prediction between measured and predicted protein content of whole pea 
seeds with NIR range from 0.938% (Arganosa et al., 2006) to 1.341% (Tkachuk et al., 1987). Conversely, in wheat, 
standard error of prediction between measured and predicted protein content of seeds has ranged from 0.24% 
(Williams and Sobering, 1993) to 0.48% (Williams et al., 1985).  
 
Similarly, our preliminary NIR calibration results show that the average difference between measured and 
predicted protein content with pea flour is ~ 0.8 %. Other studies have shown that the standard error of 
prediction between measured and predicted protein content of pea flour with NIR ranged from 0.33% (Tkachuk 
et al., 1987) to 1.19% (Arganosa et al., 2006). Conversely, with wheat flour, standard error of prediction between 
measured and predicted protein content  ranged from 0.40% (Sorvaniemi et al., 1993) to 0.53% (Manley et al., 
2002).  
 
Because seed lots are split into respective subsamples for protein measurements and NIR calibration points, 
seed lots with low protein variation will theoretically provide better NIR calibration. It is therefore possible that 
wheat seed lots have less protein variation than pea because they tend to produce better NIR calibration fits. 
Likewise, it is possible that sample size may affect variation in protein measurements. For instance, protein has 
varied by greater than 10% depending on nodal position and variety in pea (Atta et al., 2004), meaning there is 
potential for small subsamples could have greater protein variation than large subsamples. 
 
Accordingly, we have designed and are conducting two experiments to test how crop type (e.g. pea vs. wheat) 
and sample size affects protein variation in both whole-seeds and grain flour. See below for experimental 
methods and design. 
 
Wheat and Pea Whole Seed Experiment Outline 
Scope and Objective 
When validating the factory calibration on the FOSS Infratec 1241, we found that the average difference 
between measured and predicted protein content was 1.02 %. Other studies have shown that the standard error 
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of prediction between measured and predicted protein content with NIR range from 0.938% (Arganosa et al., 
2006) to 1.341% (Tkachuk et al., 1987). Conversely, in wheat, standard error of prediction between measured 
and predicted protein content has ranged from 0.24% (Williams and Sobering, 1993) to 0.48% (Williams et al., 
1985).  
 
Tighter NIR calibration for wheat may be due to more homogenous protein content within a wheat bulk sample. 
For instance, protein has varied by > 10 % depending on nodal position and variety in pea (Atta et al., 2004), 
whereas little information is available regarding seed position and protein variation in wheat. In other words, it 
is possible that wheat samples may have more uniform protein content relative to pea samples, and samples 
with uniform protein content should theoretically result in tighter NIR calibration. 
  
Sample volume could also affect protein variation. That is, protein content may be more uniform if a larger 
sample volume is tested compared to a smaller sample volume taken from the same seed lot. Sample volume 
may be particularly relevant in pea where there is potential for high protein variation on the seed level. Hence 
the goals of this study are to test: 
 

1. If greater protein variation exists whole-seed pea or wheat samples. 
2. If sample volume influences protein variation differently between pea and wheat samples.   

 
Methods and Statistical Analysis 
Four spring wheat and four yellow pea bulk samples will randomly be obtained from Montana farms. From each 
bulk sample, four subsample volumes of 1, 2, and 3 tablespoons will be ground in a Udy mill with a 1-mm screen. 
Each subsample volume will then be run for total nitrogen using LECO combustion analysis. Protein will then be 
determined by multiplying total nitrogen by 5.70 and 6.25 for wheat and pea respectively.  
 
The response of interest (yijkl) is the absolute difference in measured protein for two subsampled pairs 
corresponding to each crop type by sample volume combination. To test the effects of crop type (β) and sample 
volume (α) on absolute differences between protein measurements, ANOVA will be run using the following 
three-staged nested model with crossed factors: 
 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛼𝛼𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑘𝑘 + 𝛼𝛼𝜏𝜏𝑖𝑖𝑖𝑖(𝑗𝑗) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                       Eq. 1. 
 
where µ is the grand mean of all protein responses, τk is the seed lot corresponding to each bulk sample, and εijkl 

is the error term assuming model residuals are N(0,σ2). Homogeneity of variance assumptions will be verified 
using a Levene’s test, and post hoc multiple comparisons will be made if treatments are significant at the α=0.05 
level. Statistical analysis will be run using the PROC GLM procedure in SAS (SAS Institute Inc., 2012). 
 
Wheat and Pea Flour Seed Experiment Outline 
Scope and Objective 
Our preliminary NIR calibration results show that the average difference between measured and predicted 
protein content with pea flour is ~ 0.8 %. Other studies have shown that the standard error of prediction 
between measured and predicted protein content with NIR range from 0.33% (Tkachuk et al., 1987) to 1.19% 
(Arganosa et al., 2006). Conversely, with wheat, standard error of prediction between measured and predicted 
protein content has ranged from 0.40% (Sorvaniemi et al., 1993) to 0.53% (Manley et al., 2002).  
 
Because whole-seeds are ground and subsequently split into respective subsamples for protein measurements 
and NIR calibration points, potential for larger NIR calibration uncertainty for pea protein flour might be 
attributable to greater variation within a ground sample compared to wheat. For instance, protein has varied by 
> 10 % depending on nodal position and variety in pea (Atta et al., 2004), whereas little information is available 
regarding seed position and protein variation in wheat. In other words, it is possible that ground wheat samples 



may have more uniform protein content relative to pea samples. Ground samples with uniform protein content 
should theoretically result in tighter NIR calibration. 
  
Sample volume could also affect protein variation. That is, protein content may be more uniform if a larger 
sample volume is ground compared to smaller sample volume taken from the same seed lot. Sample volume 
may be particularly relevant in pea where there is potential for high protein variation on the seed level. Hence 
the goals of this study are to test: 
 

1. If greater protein variation exists in ground pea or wheat samples. 
2. If sample volume influences protein variation differently between pea and wheat samples.   

 
Methods and Statistical Analysis 
Four spring wheat and four yellow pea bulk samples will randomly be obtained from Montana farms. From each 
bulk sample, two subsample volumes of 1, 2, and 3 tablespoons will be ground in a Udy mill with a 1-mm screen. 
Two subsamples from each ground subsample volume will then be run for total nitrogen using LECO combustion 
analysis. Protein will then be determined by multiplying total nitrogen by 5.70 and 6.25 for wheat and pea 
respectively.  
 
The response of interest (yijkl) is the absolute difference between protein measurements for each subsample 
pair. To test the effects of crop type (β) and sample volume (α) on absolute differences between subsampled 
protein measurements, ANOVA will be run using the following three-staged nested model with crossed factors: 
 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛼𝛼𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑘𝑘 + 𝛼𝛼𝜏𝜏𝑖𝑖𝑖𝑖(𝑗𝑗) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                       Eq. 1. 
 
where µ is the grand mean of all protein responses, τk is the seed lot corresponding to each bulk sample, and εijkl 

is the error term assuming model residuals are N(0,σ2). Homogeneity of variance assumptions will be verified 
using a Levene’s test, and post hoc multiple comparisons will be made if treatments are significant at the α=0.05 
level. Statistical analysis will be run using the PROC GLM procedure in SAS (SAS Institute Inc., 2012). 
 
B. Review emphasizing how current management could impact pea protein content 
 
Based on more than 80 survey results to date, the most common yellow pea management practices across 
Montana are as follows: 
 

1. Fertilizer—Approximately half of pea producers do not apply fertilizers whereas the remaining half apply 
various blends and rates of N-P-K-S fertilizers. 

2. Inoculation type—Approximately half of pea producers use peat-based inoculant, and the remaining half 
use granular inoculant. 

3. Legume\Rotation History—Producers growing peas for the first time may not have soil-resident rhizobia 
from growing pea or other legumes previously 

 
A review has been written detailing how these management factors have impacted pea protein in growing 
climates similar to Montana (see information below). 
 
Management Options for Boosting Protein in Field Pea in Montana  
Mike Bestwick, Perry Miller and Clain Jones 
 
Introduction 
The pea protein market is expanding. In 2015, the pea protein market was valued at $22.8 M, and is projected to 
exceed $34.0 M by 2020 (MarketsandMarket, 2015). Market growth is being driven by consumer preference for 



non-GMO and gluten-free sources of protein and has given pea a marketing advantage over dairy and soy-based 
protein sources. Further new processing technologies have made pea protein extraction efficient and affordable.  
 
Examples of major food companies that use pea protein in their products include:  
 

1. General Mills—Larabar ALT protein bar 
2. Hampton Creek—Just Mayo  
3. Now Sports—Pea Protein 
4. Kirkland—Nature’s Domain Dogfood 
5. Barilla—Pasta noodles      

 

 
Figure 1. Food products in which pea protein is a key ingredient.           

Montana leads the nation in dry pea production with nearly 600,000 acres harvested in 2016 (NASS, 2016).  If 
consistently high protein content can be maintained in Montana grown pea, the pea protein industry may target 
and pay more for Montana grown pea. High pea protein could increase producer revenues.  
 
Protein content will hinge on growing conditions and management in Montana. Montana’s major agricultural 
regions are characterized as semi-arid with highly variable precipitation and temperature patterns (Padbury et. 
al., 2002). Pea is typically seeded in April and terminal drought forces the crop to mature by July, which means 
drought will affect physiological processes related to pea protein formation. Management options may also 
affect protein formation, and those that are most pertinent to Montana include:  
 

1. Fertilizer—Approximately half of pea producers do not apply fertilizers whereas the remaining half 
apply various blends and rates of N-P-K-S fertilizers. 

2. Inoculation Type—Approximately half of pea producers use peat-based inoculant, and the 
remaining half use granular inoculant. 

3. Legume\Rotation History—Producers growing peas for the first time may not have soil-resident 
rhizobia from growing pea or other legumes previously. 
   

As the protein market continues to expand, studies addressing how management affects pea protein in drought-
prone regions will become increasingly important in helping Montana producers decide how to manage pea for 
high protein. For instance, understanding how protein is influenced by different fertilizers, inoculant types, or 
crop rotations in a wet and dry growing season could help producers assess the financial risk of various 
management plans under climatic uncertainty. The objective of this document is to a) provide a basic 
physiological framework for protein formation in pea under ideal, drought, and nutrient-stressed growing 
conditions and b) highlight studies focused on how management has affected pea protein in drought-prone 
regions similar to Montana. 
 
Protein Formation in Pea 
Pea protein content is directly related to seed nitrogen (N) content—high seed N means high protein. At the 
plant level, pea protein depends on plant N uptake and remobilization of N to seeds. Under ideal growing 
conditions—meaning water and nutrients do not limit pea growth—soil nitrate (NO3) is initially taken up by pea 
roots and stored in shoots and leaves until pods begin to fill. During pod-fill, roughly 60% of  N stored in shoots 



and leaves is remobilized to the seed, while around 50% of N taken up by roots is sent directly to the seeds 
(Schiltz et al., 2005) (Figure 2). Final seed N concentration is lastly determined by seed number—with fewer 
seeds per plant, final seed N is more concentrated and protein content is higher. 
 

 
 
Differences in plant genetics may play a role in dictating final seed protein. For instance, varieties that produce 
fewer seeds are more apt to produce high seed protein (Lhuiller-Soudele et. al., 1999).  Similarly varieties that 
are more efficient at remobilizing shoot and leaf N to seeds during pod fill may produce higher protein 
compared to less efficient varieties (Larmure and Munier-Jolain, 2004). Because pea seeds successively develop 
from the lowest to highest nodes, individual seed protein can even be affected by nodal position and variety. 
Atta et al. (2004) observed that individual seed protein decreased from 29.8% in the first developed or lowest 
node to 24.9% in the tenth or highest node in the French variety L833 (Figure 3 A). Alternatively individual seed 
protein remained constant across nodes in the variety Colmo (Figure 3 B). Lower individual seed protein at 
upper nodes in L833 was attributed to less efficient N acquisition and remobilization to seeds when pods were 
filling in upper nodes compared to when seeds were developing in lower nodes. In Colmo, N acquisition and 
remobilization remained constant when seeds were developing at both upper and lower nodes. 
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Figure 2. During vegetative 
growth, soil nitrate (NO3--N) 
is absorbed by roots and 
stored as N in pea roots, 
shoots, and leaves (1-2). 
During pod-fill, plant N 
stored in roots, shoots, and 
leaves are remobilized to 
the seed (2-3). The more N 
remobilized to the seed, the 
higher the protein content. 
This means plants with 
fewer seeds often have 
higher protein content. 

Figure 3. Individual seed 
protein as affected by 
nodal position and variety. 
Left). Individual seed 
protein decreases as nodal 
position increass in the 
French variety L833. 
Right). Individual seed 
protein remains constant 
across nodal position in 
the French variety Colmo. 
Figure adapted from Atta 
et al. 2004. 



Despite the potential for variety to affect protein, environmental factors may have a greater effect on the 
physiological processes that affect protein formation for pea grown in Montana (Chen, unpublished data). For 
instance, drought stress may reduce seed number which in turn could affect final seed N concentration. Water, 
nutrient stress, or a combination of the two are common in Montana and are likely to affect protein for pea 
grown in Montana. More specifically, water and N stress are the best documented and are covered below.   
 
Implications of Drought and Nitrogen (N) Stress on Protein 
 
How could water stress affect pea protein? 
Drought stress results from low or poorly timed precipitation relative to important crop growth stages. In pea, 
drought stress before flowering reduces vegetative biomass. Reduced vegetative biomass translates to less 
stored N in shoots in leaves, which means less potential for N to be remobilized to seeds during pod-fill (Lhuiller-
Soudele et. al., 1999). Alternatively, drought stress incurred at any period over the crop cycle can reduce seed 
number (Guilioni et al., 2003). Reduced seed number has potential to boost protein since N is remobilized to 
fewer seeds. Depending on timing and severity of drought, it is possible that drought stress could increase, 
decrease, or have no effect on pea protein compared to a well-watered plant (Figure 4). 
 

 
 

How could nitrogen (N) stress affect pea protein? 
Water availability is tightly related to N availability. Because no or low rates of fertilizer N are applied to pea, N 
becomes plant available primarily through decomposition of organic and crop residue and N2 fixation. Under wet 
and warm growing conditions, soil microbial activity needed to decompose organic N into NO3

- for plant uptake 
is high. Moist (but not saturated) soils also support a healthy environment for rhizobia populations which 
maintain nodule activity for effective N2 fixation. Conversely decomposition and N2 fixation rates are reduced 
when soils are dry or cool. This means more N will be made plant available through decomposition or N-fixation 
in a high rainfall year compared to drought conditions, but reductions in plant biomass and seed number from 
drought could also affect final protein (Figure 5). 

Figure 4. Compared to a 
well-watered plant, drought 
stress reduces biomass and 
seed number. Less biomass 
has potential to decrease 
protein since less N will be 
remobilized to the seed 
during pod-fill. Conversely 
fewer seeds may increase 
protein content on a per-
seed basis. Drought stress 
has potential to increase, 
decrease, or have no effect 
on seed protein depending 
on timing and severity of 
occurrence. 



 

 
 
Nitrogen (N) Management and Pea Protein 
 
Despite the complexity of how drought and N interactions may affect pea protein, a number of studies have 
addressed how protein responds to different N management strategies in semi-arid systems similar to Montana. 
Specific N management strategies include applying different N rates, use of inoculation, and inoculant type. The 
following highlights results from these studies.       
 
How could high starter N rates affect pea protein? 
Early studies conducted in the Canadian prairies suggest protein can be increased at high N-rates (Sosulski et al., 
1974; Holl and Vose., 1980) regardless of wet or dry growing season conditions. For instance, Holl and Vose 
(1980) showed that N rates greater than 143 lbs/ac (160 kg/ha) increased protein by approximately six percent 
compared to an unfertilized control. This result was attributed to greater seed N accumulation during the pod fill 
period (Figure 6A). Likewise, McClean et. al. (1974) showed in a greenhouse study that seed protein increased 
from 20 to 30 % at  N rates ranging from 0 to 293 lbs/ac (326 kg/ha) under high, medium, and low soil moisture 
levels (Figure 6B). 
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Figure 6. Seed protein content was observed to remain high over the pod-fill period when starter nitrogen (N) was applied at 286 and 143 
lbs ac-1 compared to no starter N (Holl and Vose, 1980). B. Seed protein increased with starter N-rates of 0-0293 lbs/ac in a greenhouse 
experiment conducted by McClean et al., (1974). 

Figure 5. Compared to a 
well-watered plant, dry soils 
reduce the amount of soil 
nitrate ( NO3-)   absorbed by 
pea roots and atmospheric 
nitrogen ( N2)   fixed in pea 
nodules (pink circles). While 
drought decreases the 
amount of N remobilized to 
seeds by reducing soil N 
uptake and vegetative N 
storage capacity, reduced 
seed number from drought 
stress may increase protein 
on a per seed basis. This 
means timing and severity of 
drought and N stress 
interactions will greatly 
affect final protein. 



Is it worth applying high starter N rates to boost protein? 
While these studies demonstrate the effectiveness of high fertilizer N-rates at increasing protein, it would not be 
practical to apply high doses of starter N on three accounts. First, nitrogen fertilizer is the greatest input cost for 
crop production in Montana, and it is unlikely that increased pea protein would offset fertilizer costs—
particularly at N rates greater than 143 lbs/ac. Second, pea is marketed as being a low input crop in terms of 
nutrient requirements, so high rates of fertilizer N may deteriorate pea marketing potential. Third, 
improvements in seed inoculant has increased N-fixation potential (Rennie and Hynes, 1993) which may greatly 
reduce or even eliminate the need for fertilizer N. A recent Montana study found that inoculated pea could fix 
between 49 to 112 lbs/ac (54-124 kg/ha) depending on growing season conditions (McCauley et al., 2012). For 
these reasons, recent work has focused on how economical starter N rates and/or inoculant types (i.e., granular 
vs. peat) affect protein. 
 
How could lower starter N rates affect protein and yield? 
Starter N is most likely to be effective at boosting protein with low spring soil NO3

- levels. (McKenzie et al., 2001 
a.). A four year study conducted across Alberta showed that when spring soil NO3

- was less than 18 lbs/ac (20 
kg/ha), starter N rates of 18, 36, and 54 lbs/ac (20, 40, and 60 kg/ha) increased protein 33% of the time, 
decreased protein 25% of the time, and had no effect on protein 42% of the time. These increases in protein, 
however, were modest and did not increases protein by more than 0.8% relative to a non-fertilized control in 
any instances.  When spring soil NO3

- was greater than 18 lbs/ac (20 kg/ha), starter N generally did not benefit 
protein (Figure 7). 
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The study also showed that starter N generally did not benefit yield. Application of starter N had no effect on 
yield in 73% of trials, increased yield in 24% of trials, and decreased yield in 3% of trials relative to an unfertilized 
control. In instances where starter N benefited yield, yields were increased by 8 and 12% at the 18 and 54 lbs/ac 
(20-60 kg/ha) N-rates respectively.     
 
How could inoculation affect protein and yield? 
Inoculant is most effective under low spring soil NO3

- levels and in fields where legumes have never been grown. 
The aforementioned study in Alberta showed that inoculant led to a 4% increase in protein relative to a non-
inoculated control when spring NO3

- was less than 18 lbs ac-1 (20 kg ha-1), but inoculant was less effective at soil 
N levels greater than 18 lbs/ac (Figure 8 A.). Likewise inoculant boosted protein in 64% of fields with no history 

Figure 7. Percent of field trials in 
which the addition of starter nitrogen 
(N) fertilizer led to a decrease, did 
not change, or increased pea protein 
content at different spring soil nitrate 
(NO3-) test levels across Alberta. 
Figure adapted from McKenzie et al. 
(2001 a.). 



of legumes and in only 13% of fields with a history of legumes (Figure 8 B.). The effectiveness of inoculant in 
fields without legume history is often attributed to low soil rhizobia populations. 
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Figure 8. Percent of field trials in which the use of inoculation led to a decrease, did not change, or increased pea protein content at A) 
different spring soil nitrate (NO3-) test levels or B). on fields with different rotation histories of legumes across Alberta. Figure adapted 
from McKenzie et al. (2001 a.). 
 
Yields also benefited from inoculant in 41% of trials with an average yield increase of 14% over a non-inoculated 
control. Notably inoculant did not increase yields in 55% of fields with no history of a legume crop. The lacking 
yield response, however, was attributed to indigenous populations of soil rhizobia widely present in Canadian 
prairie soils.    
 
How could inoculant type affect N-fixation, protein, and yield? 
Granular inoculant has been observed to be more effective at fixing N than peat-powder inoculant (Clayton et 
al., 2004b.). N-fixation is often superior with granular inoculant compared to peat-powder due to differences in 
application methods. Specifically, granular inoculant is applied to the soil at seeding, and peat-powder is applied 
directly on the seed. Soil-applied granular inoculant allows rhizobia populations to be evenly distributed on pea 
roots whereas rhizobia are clustered near the root crown with seed-applied peat-powder. Consequently nodules 
form on tap and lateral roots from granular inoculant, and larger nodules tend to cluster on the root crown with 
peat-powder (Figure 8 A). The widespread nodule distribution associated with granular inoculant has been 
attributed to increasing N-fixation. 
 

 
Figure 9. Nodules (pink circles) have been observed to be widely-distributed on pea roots from granular inoculant since granular inoculant 
is applied to the soil. Nodules from peat-powder are usually larger and clustered on the root crown because peat-powder is applied to the 
seed.  Well-distributed nodules associated with granular inoculant have been attributed to greater N-fixation compared to peat-powder. 



Increased N-fixation from granular inoculant has been shown to boost protein (Clayton et al., 2004a.). A two 
year study conducted at three locations in Alberta showed that seed protein averaged 19.4 and 17.6% using 
granular and peat based inoculant respectively (Figure 10). Starter N was applied at 0, 18, 56, and 72 lbs/ac (0, 
20, 60 and 80 kg/ha) in this study but had little effect on protein content. It was therefore concluded that 
increased N-fixation from granular inoculant was mainly due to superior nodule distribution on pea roots, and 
greater N-fixation during the pod-fill period may have boosted final seed N and protein. 
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Greater yield responses were also associated with granular inoculant relative to peat powder. Averaged across 
the six site and year combinations, seed yields were 630 lbs/ac (700 kg/ha) greater with granular inoculant than 
with peat-powder. Additionally application of fertilizer N did not benefit yields when granular inoculant was 
applied, suggesting that granular inoculant provided adequate N supply to meet yield potential.   
 
Is it worth applying fertilizer N if inoculation fails? 
Inoculant generally performs as well or better at maintaining high protein and yield compared to applying 
fertilizer N. However, with dry seedbed conditions, inoculant may fail to produce root nodules for effective N-
fixation. In the case of inoculation failure, applying fertilizer N may be needed to provide pea with adequate N 
supply for protein and yield formation.  
 
A two-year study conducted at two central Montana sites compared how pea protein and yield responded to a 
non-inoculated control (e.g. inoculation failure), granular inoculant, and fertilizer N applied at 0, 4, 6, and 8 
weeks after seeding (McConnell et al., 2002). The results showed that protein and yields were consistently 
lowest for the non-inoculated control, but protein and yields were generally greatest with granular inoculant 
(Figure 11.). In a number of instances, granular inoculant and fertilizer N applied either 0, 4, or 6 weeks after 
seeding produced similar protein and yield. Hence, the conclusion from this study was that granular inoculant 
will provide adequate N supply to meet protein and yield potential under normal growing conditions, but under 
unusually dry spring conditions, it may be worth applying fertilizer N within 6 weeks after seeding to ensure 
adequate N supply. 
 

Figure 10. A two-year study 
conducted across three sites in 
Alberta showed that granular 
inoculant outperformed peat-
powder at boosting protein. 
Granular was likely more 
effective due to better nodule 
distribution on pea roots. 
Figure adapted from Clayton 
et al., 2004 a. 
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Figure 11. Effect of six fertility treatments on pea yield and protein at two Montana sites over the 1999-2000 growing seasons. Fertility 
treatments were no inoculation, granular inoculant, and broadcast fertilizer N applied at 0, 4, 6, and 8 weeks after seeding. Different 
letters above bars indicate statistical differences at the p>0.05 significance level.  



What are the main points regarding the effects N management on pea protein and yield? 
Combined, these studies indicate that protein can be boosted with high N-rates (>143 lbs/ac), but such high 
rates are non-economical and may not be necessary due to improvements in inoculant technologies.  With 
lower starter N-rates, comparable or greater pea protein can be expected via N-fixation than through applying 
starter N. Nitrogen fixation will likely be greatest by using granular inoculant, but inoculation or starter N may 
show no benefit with high spring soil NO3

- levels or in fields with a rotation history of legumes. Spring soil NO3
- 

testing and knowledge of rotation history could therefore help in addressing the effectiveness of applying 
starter N and/or inoculant.   
 
Application of starter N does not guarantee higher yields. Adequate N supply can likely be met by inoculation, 
and granular inoculant may be more effective than peat-powder. Fields with high of soil rhizobia populations 
may likewise eliminate the need for starter N or inoculant to meet yield potential, but under dry spring growing 
conditions when root nodules may not develop, it may be beneficial to apply starter N within 6 weeks after 
seeding.    
 
Potential Implications of Phosphorus, Sulfur, and Potassium Management on Pea Protein      
           
Although most studies have focused on the effects of N management on pea protein, phosphorus (P), sulfur (S) 
and potassium (K) are known to affect N-fixation and could therefore affect protein too. The next sections 
describe how P and S deficiency limit N-fixation and highlights how P, S, and K deficiencies have affected protein 
in the neighboring Canadian prairies. 
 
How does P stress limit N-fixation? 
Phosphorus indirectly affects N-fixation. Pea roots absorb P in the form of phosphate (HPO4

2-).  Plants deficient 
in phosphorus produce less green-leaf area and biomass which in turn reduces photosynthesis. Reduced 
photosynthesis limits the amount of atmospheric carbon (CO2-C) assimilated by pea. Because rhizobia living in 
pea nodules use plant carbon (C) as an energy source to fix N, N-fixation can be reduced (Figure 12.) from P 
deficiency. 
 

 
 

Figure 12. Phosphate (PO42-) is 
absorbed by roots which 
builds green leaf area and 
biomass (1-2). Greater green 
leaf area and biomass allows 
the plant to convert 
atmospheric carbon dioxide 
(CO2) to plant carbon (C) 
through photosynthesis (2-3). 
Stored plant carbon is used as 
an energy source for rhizobia 
populations living in pea 
nodules (pink circles) which fix 
nitrogen (3-4). Consequently 
low soil phosphate can 
indirectly inhibit N-fixation. 



For instance, Jakobsen (1985) measured N2-fixation in response to various P fertility rates 15-18 days after 
seedling emergence in a greenhouse experiment. His results showed that pea nodules had the greatest N-fixation 
rates at the highest P rates (Figure 12). Since starter P can increase N-fixation, starter P could also affect protein. 
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How could starter P affect protein and yield? 
An early study conducted in Saskatchewan showed that starter P boosted protein by 1.7% at rates up to 56 kg 
ha-1 compared to no applied starter P (Sosulski et al., 1974). A more recent province-wide study in Alberta 
showed that starter P at rates up to 26 kg ha-1 only increased protein on average by 0.2% across 52 sites 
(McKenzie et al., 2001b). At sites with spring soil P tests below 15 ppm in the top 6 inches (15 cm), the average 
increase in protein was 0.4% from starter P.  
 
The latter study also showed that starter P could boost yields and was most likely to do so with low soil P test 
levels. Specifically, starter P boosted yields at 19 of 52 sites and at 16 of 30 sites with soil P test levels below 15 
ppm. The average yield advantage was 7% over a non-fertilized control at sites where yield increases were 
observed. Combined, these studies suggest there is potential for slight increases in protein and yield from 
starter P.                
 
How does S stress limit N-fixation? 
Sulfur (S) directly affects N-fixation. Sulfur is absorbed by pea roots in the form of sulfate (SO4

2-), and low soil 
SO4

- reduces nodule formation on pea roots (Figure 14). Fewer nodules means less N-fixation. 
 

Figure 13. Nitrogen fixation 
was higher in pea plants that 
were dosed with 60 mg of 
phosphorus (P) per pot 
compared with plants that 
were given 0 and 15 mg of P 
per pot. Figure adapted from 
Jakobsen (1985). 



 
Figure 14. The number of root nodules (pink circles) can be reduced if soils are deficient in sulfate (SO42-). Reduced nodule number may 
reduce nitrogen fixation. 
 
In a greenhouse study, Zhao et. al. (1999) compared N2-fixation rates in pea between 0 and 50 mg of S per pot. 
Results showed that N2-fixation was consistently higher with the treatment that included S at 28, 38, 56, and 73 
days after sowing (Figure 15). Sulfur (S) could affect N-fixation and potentially protein. 
 

 
 
How could starter S affect protein and yield?  
Few field studies have addressed how starter S affects protein in pea. Across 52 sites in Alberta, increases in 
protein or yield were generally not observed between starter S at rates of 0 and 18 lbs/ac (20 kg/ha) (McKenzie 
et al., 2001 a). Spring soil S levels were not reported in this study, so it is possible that soil S was sufficient for 
protein. In Montana, notably, sulfur testing is somewhat unreliable due in part to high levels of gypsum in many 
soils, so on-farm experimentation may be the best method for Montana producers to test how starter S affects 
protein and yield in their fields.       
      
What about potassium (K)? 
Potassium (K) indirectly affects pea development and N-fixation similar to phosphorus (P). Montana soils are 
generally rich in K and on average exceed 250 ppm, though some ag soils have K levels as low as 70 ppm, 
especially in coarse, low pH soils (Clain Jones, personal communication, June 2016). With generally high K-levels, 
it is unlikely that K would inhibit protein formation or yield although this has not been explicitly tested in 
Montana.  
 

Figure 15. Addition of 50 mg 
per pot of starter sulfur (S) 
increased N-fixation over the 
first 73 days of the crop cycle 
in a greenhouse experiment. 
Figure adapted from Zhao et 
al. (1999). 



What are the main points regarding P, K, and S management? 
Soils deficient in P, S or K can reduce N-fixation. Reductions in N-fixation has potential to reduce protein and 
yield. A province-wide study in Alberta indicates that starter P can lead to modest increases in protein yield, and 
increases are more likely to be realized with when soil P tests are below 15 ppm. Alternatively starter S did not 
increase protein or yield in Alberta. Because most Montana soils are high in K, it is unlikely that additional K will 
boost protein and yield in most Montana soils.  
 
 
Summary and Final Remarks 
 
Pea protein depends on N uptake and remobilization of N to the seed.  Both drought and management 
interactions will likely affect these processes in Montana. Drought may reduce protein by decreasing N uptake 
and remobilization of N to the seed, but drought may also increase protein by reducing seed number. 
Application of starter N and use of inoculant may increase soil N uptake and N-fixation, but these management 
options will be most effective with low spring soil nitrate (NO3

-) tests, in fields where legumes have never been 
grown, and under dry seedbed conditions. Granular inoculant could be more effective than peat-powder at 
increasing N-fixation due to greater nodule distribution on tap and lateral roots. Starter P fertilizer may 
indirectly increase N-fixation and will most likely be effective if soil P tests are low. Starter S may directly 
enhance N-fixation, but soil S testing is unreliable in Montana, so on-farm experimentation and tissue S testing 
may be the best way to determine if starter S benefits protein. Due to high K levels in most Montana soils, it is 
unlikely that starter K will benefit protein on most fields, but might on K deficient fields (soil test K < 250 ppm). 
 
Pea protein is a new study area for Montana. Results presented here have largely been extrapolated from 
Canadian studies which may have been conducted over more favorable growing conditions than what is typical 
in Montana. For instance, recent statewide variety testing in Montana showed mean yields ranged from (2243-
2680 kg/ha) and growing season (April-August) precipitation ranged from 3.7-16.7 inches (94-424 mm) 
(Mohammed et al., 2016). The studies from the Alberta and Saskatchewan reviewed in this document seldom 
reported yields below 2700 lbs/ac (3000 kg/ha) and (McKenzie et al., 2001a.; Clayton et al., 2004a.), suggesting 
drought did not limit pea production to the extent that would be expected in Montana. It is possible that 
drought and management interactions could affect pea protein differently in Montana than in Canada. The 
information provided here should therefore be considered as a starting point for adapting management to 
maintain high pea protein. 
 
C. Yellow pea sample collection from 2016 growing season 
 
To date, 80 yellow pea samples and surveys have been collected from the 2013-2015 growing seasons, and 35 
additional samples have been collected from the 2016 growing season. We anticipate to acquire 50-100 
additional samples between now and April, 2017. Once all samples have been collected and tested for protein, 
management surveys will be sent to producers, and a formal analysis will completed to identify how both 
management and climate affect protein content in yellow pea. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel Services:  $64,026.22 
• Total Operations:  $4,085.02 

 
  



2) 41W220 – Principal Investigator:  John Peters; Email:  john.peters@chemistry.montana.edu 
 
Progress towards milestones 
This quarter has been focused on processing of samples and collection of data. New soil samples were received 
throughout the fifth and sixth quarters of 2016. These new samples were cataloged and stored at -20°C. 
Samples were separated for different analysis and shipped to proper locations. 
 
1) Chemical testing   

a) The samples have been delivered to the University of 
Idaho for chemistry analysis which includes: extended 
Soil Fertility Test (pH, organic matter, ammonium, 
nitrate, available P and K, boron, and sulfate), 
moisture content test and Soil Trace Element (Metals) 
Screen.  These result will be received by the beginning 
of March.  
 

2) nifH Primer development 
a) Several nifH primers were made and tested against 

Azotobacter vinelandii for a control. The Universal F2 
primer performed the best with the control DNA 
(Figure 1). All soil samples were then tested for the 
nifH as a control before being sent off for sequencing.  

b) A quote has been received from the company MR 
DNA to perform nifH targeted sequencing on our soil 
samples. The next generation sequencing methods 
will deliver the most accuracy and depth for our 
samples. We will be sending the soil DNA to the 
company after extraction and quality testing has been 
performed on all of the samples.  
 

3) Soil Extraction 
a) We have refined a method for the extraction of DNA using the MolBio Power Soil kit and continuing the 

extraction from the spring and summer samples. After DNA extraction is complete we test our DNA 
against our primers for 16s DNA (533F, 805R) and for nifH (Table 1).  

 
Table 1: Spring 2016 DNA 
extraction. A few examples 
of the DNA extraction 
process for all samples. DNA 
is extracted with the 
Molbio Powersoil Kit, 
quantification of DNA is 
done on nano-drop 
spectrometer. PCR is 
performed on all extracted 
DNA to test for the 
amplification of 16s and nifH 
genes. These genes will be 
re-amplified on site for 
targeted next generation 
sequencing analysis. 

DNA code Location Depth 
DNA Extracted 

(ng/mL) 
16s 

primers 
nifH 

primers 
JZ_017 NARC 0-6" 18.1 x x 
JZ_018 NARC 12-24" 6.4 x x 
JZ_019 NARC 24-36" 4.4 x x 
JZ_029 NARC 6-12" 38.6 x x 
JZ_020 WARC 0-6" n/a n/a n/a 
JZ_021 WARC 12-24" n/a n/a n/a 
JZ_022 WARC 6-12" 19.4 x x 
JZ_023 EARC-Dry 0-12" n/a n/a n/a 
JZ_024 EARC-Richland 0-12" 27.2 x x 
JZ_025 EARC-Irr 0-12" 33.6 x x 

 

 

Figure 1: Test for control primers against azotobacter 
vinelandii genomic DNA. nifH primers universal F2 
and universal R gave the brightest and largest band. 
The 371bp PCR product is a large enough cassette to 
determine diversity.  

mailto:john.peters@chemistry.montana.edu


Timeline for future progress:  After DNA extraction and PCR gene testing in the lab, DNA will be sent off for next 
generation sequencing at MR DNA. Once genomic data and chemical data is received (mid-March to mid-April) 
we will have a large data set that will encompass many variables including geography, nutrient application, 
irrigation methods and pea variety. A pipeline has already been refined in summer of 2016 for multivariate 
statistics to analyze this large data set. Data processing and hypothesis testing should take place over the 
summer of 2017 with the finalization of the work by Fall 2017. 
 
Hiring 

• No additional hires in Quarter 6. 
 

Expenditures 
• Total Personnel Services:  $68,885.74 
• Total Operations:  $21,554.55 
 

3) 41W213 – Principal Investigator: Carl Yeoman; Email: carl.yeoman@montana.edu 
 
Progress towards milestones 
The animal trial was inconclusive, so there is nothing to report on that.  They have been planning an in-vitro 
experiment but do not have data from that yet. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Equipment 

• We will not be ordering any additional equipment for this project. 
 
Expenditures 

• Total Personnel Services:  $38,500.01 
• Total Operations:  $19,544.35 
• Equipment:  $8,737.64 

 
 
Cover Crop/Grazing subproject of the Agriculture MREDI Grant 
1) 41W214 – Principal Investigator: Darrin Boss; Email: dboss@montana.edu 
 
Progress towards milestones 
 
Statewide MREDI 
In the statewide cover crop trial, targeted mono- and polycultures were evaluated at the seven research 
stations.  Species represented Cool season species, warm season species and polycultures made up of cool 
season, warm season, a blend of cool and warm season and an alternative polyculture thought to be very novel 
in current rotations around the state.  The species were determined by input of local agronomists and animal 
scientists that appeared to have the best opportunity to germinate and produces either above ground biomass 
or a favorable root structure.  There were two planting dates, one appropriate for cool season planting and on 
appropriate for the warm season plantings.  Each of the four polycultures were planted at each planting date.  
Harvesting occurred when the first species began to head, triticale in most cool season environments and millet 
in the warm season planting.  Thereby preventing additional viable seed production from the cover crop. 
 
In seven locations, the cool season species produced from 615 to 2267 pounds above ground biomass on a dry 
matter basis with oats being the greatest across all environments.  With the polycultures being lower than the 
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monoculture producing the greatest amount of biomass.  In all locations when the polycultures were compared 
across planting dates the warm season outperformed the early planting, however the early harvest was 
completed around July 8 and the late season harvest date occurred well into August thereby using more soil 
available water and mimicking a season long cash crop.  Nutrient content of the monocultures and polycultures 
across all locations and both planting dates were very high quality and were across all sites, higher in CP and 
Lower in ADF than a normal brome hay produced in similar locations.  Although not as high in CP or as low in 
ADF as a first cutting Alfalfa hay, but in some cases it was equal to or higher than alfalfa.  The forage quality of 
cover crops followed the well-documented forage nutrient-quality pattern of as the plant matures CP and other 
nutrient quality is reduced.  Nitrates for the project followed the same maturity patterns.  Nitrates for the trial 
ranged within the guidelines for generally safe for non-pregnant animals (1,000 to 5,000 ppm NO3), however if 
fed to pregnant cattle as hay it is recommended to be blended at least 50:50 with hay that does not contain any 
nitrate.  No soil-health measurements or the following wheat yields could be determined in the short window of 
time.  However, if managed like a cash crop and if the cover crop was allowed to be harvested at the peak of 
nutrient quality and yields as would an annual forage, it would appear in areas that had via moisture the 
targeted cover crop species performed well throughout the state. 
 
Large Termination Cover Crop Project 
In the large plot termination trial where alternative economics streams of cover crop usage were evaluated, 
there are some cover crops when used as either a dry forage (hay) or grazing that have shown a $100/acre 
return over what a transitional winter or spring wheat/fallow rotation.  Uses current wheat, hay and grazing 
prices.  There are also cover crops returning less that the traditional wheat/fallow rotations.  It should be noted 
that the harvest date for the cover crops has average July 10 across the entire trial from 2012 to 2016 (Table 1).  
By harvesting the cover crops as either a dry forage (hay) or grazing at this time point, the deep soil moisture is 
protected for the following cash crops.  No cover crop is allowed to produce viable seed, if at all possible, and it 
allows winter wheat to have a chance to be included in the rotation, since the cover crop is terminated after the 
grazing or haying to allow for fall planting of winter wheat should that be the desire.  Over the duration of the 
trial there has been timely rains during the wheat years and both above and below in crop normal rainfall.  
There has not been a devastating drought or a below normal rainfall without timely rains during the wheat 
years.  Therefore, no assumption can be made about the overall economic two-year rotation should a severe 
drought occur in this rotation. 
 
Soil bulk densities and water infiltration rates were generally unaffected by long-term cover crop inclusion in 
comparison to traditional wheat fallow rotation.  However, it should be noted changes in soil parameters and 
how a soil equilibrates to long term rotations takes substantial time, as an example it took several years to alter 
organic matter as producers adopted chemical fallow or other conservation tillage practices. 
 
  



Table 1.  Cover crop above ground biomass and either winter or spring wheat yields across all years of large termination 
cover crop trial near Havre Montana. Crop years 2012 to 2016. 

 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel Services:  $16,523.26 
• Total Operations:  $5,397.91 

 
2) 41W227 – Principal Investigator: Emily Glunk; Email: emily.glunk@montana.edu  
 
Progress towards milestones 
The manuscript “Preference and forage quality of 13 cultivars of forage barley and 2 cultivars of oats when 
grazed by sheep” was published in the American Journal of Experimental Agriculture. It is currently available 
online. Dr. Glunk also has given several presentations using this information, as well as preliminary information 
from the larger cover crop trial through the MREDI project. This includes presentations in St. George, UT, as well 
as Shelby, Bozeman, Plentywood, and Scobey, MT.  
 
Glunk’s group, alongside Dr. Tony Hartshorn’s lab, is still working on finishing-up soil and forage quality analyses. 
Additionally, Dr. Glunk is working with several faculty on developing cover crop fact sheets and Extension 
modules, which will include information obtained from this project. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel Services:  $7,572.42 
• Total Operations:  $8,648.73 

Barley 909.2 defgh 47.0 h 43.4 efg 10026.0 a 33.3 bc 29.6 abcdef 6176.7 a 42.4 ab 26.2 bcde 6697.5 a 80.4 abcd 26.1 b

Mix 1 2069.6 a 50.5 gh 44.9 cdef 4629.9 fg 31.6 bc 26.7 def 4019.4 cd 45.4 ab 27.2 bcd 3001.9 de 78.8 abcd 30.7 a

Mix 2 1498.5 abcd 57.1 efg 45.1 cde 5780.4 cd 28.6 c 26.4 f 4538.0 bc 45.3 ab 26.0 bcde 4603.9 b 77.7 abcd 31.9 a

Mix 3 1413.8 abcde 56.3 efg 39.2 g 5448.2 de 32.1 bc 30.0 abcdef 2858.4 ef 42.4 ab 25.9 bcde 3264.3 de 82.0 abc 32.3 a

Mix 4 1834.1 ab 56.9 efg 42.7 efg 6504.2 b 34.1 abc 28.5 bcdef 3450.8 de 42.6 ab 22.2 e 4006.1 bc 78.1 abcd 31.4 a

Mix 5 862.5 defgh 55.3 fg 44.5 cdef 4506.2 fgh 29.6 bc 26.4 ef 2361.9 fghi 42.8 ab 25.6 bcde 1347.1 ghij 84.4 a 31.6 a

Mix 6 690.1 ghi 60.5 def 45.8 bcde 713.1 qrs 35.7 ab 32.1 abc 1430.5 jk 46.0 ab 26.7 bcde 985.9 hijk 76.0 cd 31.7 a

Mix 7 1770.1 ab 74.1 a 50.8 a 482.1 rs 34.8 abc 30.8 abcde 886.8 k 48.4 a 26.7 bcd 791.2 hijk 77.2 bcd 30.3 ab

Mix 8 919.1 defgh 60.7 def 45.2 cde 1070.9 pqrs 34.1 abc 30.8 abcdef 1072.2 k 44.2 ab 25.5 bcde 1250.5 ghij 76.8 bcd 30.4 ab

Mix 9 683.9 ghi 65.5 bcd 48.3 abc 3054.9 klmn 34.5 abc 29.8 abcdef 2063.7 ghij 45.8 ab 24.9 cde 1993.6 f 83.8 ab 33.3 a

Mix 10 1386.1 abcdef 70.9 ab 49.7 ab 3291.6 jklm 31.7 bc 28.7 bcdef 1486.8 jk 46.3 ab 27.4 bc 853.5 hijk 80.6 abcd 31.1 a

Mix 11 1452.0 abcde 61.3 cdef 44.4 cdef 3036.3 klmn 33.8 abc 28.7 bcdef 3444.7 de 42.0 ab 25.8 bcde 3576.2 cd 79.8 abcd 31.0 a

Mix 12 1452.0 abcde 56.0 efg 40.6 fg 4397.4 fgh 34.5 abc 28.7 bcdef 4828.3 b 41.2 b 26.3 bcde 3998.0 bc 73.6 d 31.8 a

Mix 13 1643.1 abc 65.2 bcd 45.1 cde 3954.5 ghij 33.8 abc 27.9 cdef 2018.5 hij 40.4 b 22.9 de 1421.8 fgh 76.8 bcd 32.7 a

Mix 14 390.4 hi 62.4 cde 43.9 cdef 3850.5 hij 36.3 ab 30.9 abcd 2468.7 fgh 45.9 ab 25.8 bcde 950.4 hijk 77.8 abcd 34.3 a

Mix 15 972.9 cdefgh 61.7 cdef 43.6 defg 2333.6 o 33.6 abc 30.6 abcdef 2728.3 fg 46.4 ab 26.0 bcde 1246.4 ghij 80.9 abc 32.5 a

Fallow 0.0 i 68.3 abc 47.9 abcd 0.0 s 34.1 abc 29.2 abcdef 0.0 l 46.0 ab 31.9 a 0.0 l 77.5 abcd 30.0 ab

Std Err:  

Cover Crop in 2012 and 2013 were planted on fallow ground

2015
12.05 CY/ 7.52 IC

2012 2013 2014 2016

Numbers within column with different superscript differ by p = 0.05
CY = Crop Year; inches of moisture measured Sept - August
IC = In Crop; inches of moisture measured April - July

CC, lb/ac
7.33 IC

CC, lb/ac
18.46 CY/13.28 IC

CC, lb/ac
12.03 CY/ 4.87 IC

WW bu/ac SW bu/ac
18.86 CY/ 12.21 IC

CC, lb/ac

CC = 273.44 lb/ac; WW = 2.24 bu/ac; SW 1.54 bu/ac

WW bu/ac WW bu/ac WW bu/acSW bu/ac SW bu/ac SW bu/ac
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On-Farm Precision Experiment subproject of the Agriculture MREDI Grant 
1) 41W215 – Principal Investigator: Bruce Maxwell; Email: bmax@montana.edu 
 
The OFPE team of PIs and key collaborators (farmers and industry representatives) meet every 2 weeks to 
discuss progress, data management and research approaches. See our website: 
(https://sites.google.com/site/ofpeframework/) for detailed information about the project. 
 
Progress towards milestones 
 
PI Maxwell and Technician Davis (MSU LRES) 
Phil Davis has been in contact with our farmer cooperators and we fully intend to carry out On-Farm Precision 
Experiments on at least 1 field on each farm in 2017. We have already constructed or in the process of creating 
variable nitrogen fertilizer rate prescriptions based on previous year yields and in some cases protein. We are 
continuing with the study under the assumption that funding will be available in 2017 and 2018 to continue 
analysis and data management. We have applied for grants with the Montana Fertilizer Advisory Committee to 
at least fund Phil Davis our field technician to assure delivery and cleaning of data from the combine instruments 
following harvest. We unsuccessfully applied to the Western Regional USDA SARE program, the USDA NIFA 
foundational grant program and the USDA OREI grant program to fund our study. While some of these programs 
were encouraging we have since learned of some other USDA programs to apply to in 2017. 
 
We are in the full depths of analysis of 2016 data. 
 
Table 1: OFPE fields and analysis.  
 
We have analyzed the data to compare the economic performance of a set of different nitrogen fertilizer 
application strategies under different ways to characterize the relationship between nitrogen top-dress rate and 
grain yield and percent protein. We compared 4 different strategies: 1) The site specific optimum (profit 
maximizing) nitrogen application rate at each yield point in the field, 2) no nitrogen applied, 3) the farmer 
selected rate to be uniformly applied to the field if we were not doing our experiment, and 4) the profit 
maximizing uniform rate of nitrogen (Figure 1). 
 

 
 

Figure 1. The calculated average net return per acre using 
different top-dress nitrogen fertilizer application strategies 
based on the 2016 yield and protein response in the winter 
wheat crop on the sec35mid field. 
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Clearly the site-specific optimized rate approach (N_opt) has higher net returns than the 0 nitrogen rate (N_0), 
50 lb/acre rate that the farmer would have applied (N_50) and the full-field uniform application to get maximum 
net return (Nff_opt). The average net returns shown in Figure 1 are unrealistically high because some of the 
fixed costs for this farm are unknown, but because those would be constant over the treatments the relative 
outcome would be the same. 
 
Co-PI Rew (MSU LRES) 
Rew and Maxwell analyzed weed cell data collected 14 days following herbicide application on Broyles field 
(Sec35mid) that was infested with cheatgrass. A cell was a 10 m by 10 m area that was sampled with a 0.1 m 
frame 10 times to estimate the average density of the grass and broadleaf weeds. The total cells visited was 266. 
Yield monitor points were assigned to each weed density cell. There was a negative relationship between grass 
weed density and winter wheat yield as expected (Figure 2). 
  

 
 
There was also a significant negative impact of grass weed density on winter wheat protein content (%) in the 
same field (Figure 3). There was no relationship between broadleaf weed density and crop yield or percent 
protein. The grass weed impact was convincing evidence that we should construct a weed density map 
predicted from geographic variables (Figure 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The relationship between grass weed density and 
winter wheat yield at selected points (cells) in the field. 

Figure 3. The relationship between winter wheat protein 
content (%) and weed density. Figure 4. Predicted weed density map. 



All other fields have too few data points and too low weed densities to produce a predicted map. In addition, 
the Broyles field is the only one where the data suggested a negative impact. The negative impact was 
interesting given that the entire field was treated with a herbicide that should have been effective on the 
dominant grass weed (cheatgrass). The weed analysis aspect of this study was presented by Dr. Maxwell as an 
invited speaker in the Weed Science Society of America annual meeting Symposium on Precision Agriculture. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel Services:  $146,076.58 
• Total Operations:  $135,679.72 
• Total Equipment:  $90,730.00 

 
2) 41W226 – Principal Investigator: John Sheppard; Email: john.sheppard@coe.montana.edu 
 
Progress towards milestones 
Dr. John Sheppard is managing the team focused on designing and implementing the model calibration, yield 
optimization and application prescription phases of the On-Farm Precision Experimentation (OFPE) process. A 
graduate student, Amy Peerlink, has been brought on to assist with completing and improving the usability of 
the optimization software component. Janette Rounds (graduate student) is continuing to analyze and develop 
the optimization software component. 
 
Ms. Rounds and Ms. Peerlink are expanding the nitrogen prescription generating process to handle protein 
inputs as well as yield inputs. Currently, the nitrogen prescription process takes in the previous year’s yield, 
groups the yield into bins and then assigns a nitrogen rate using one of a set of random methods developed in 
the early months of 2016. The particular random method used in the OFPE experiments was one that minimized 
the jumps between different nitrogen rates. In other words, while still maintaining an element of randomness, 
this method reduced the number of times the applied nitrogen rate jumped suddenly from a low rate to a high 
rate and vice versa. We wanted to minimize these jumps in order to minimize the stress on farmer’s machines. 
However, we used the random element in this method to try and capture data for a variety of conditions on the 
field. However, since this process does not also take previous year’s protein into account, it is clear that we 
cannot assess many of the conditions on the field. We are extending the method so that protein variations are 
taken into account. This will allow us to collect more detailed information about a field. It is our hope that we 
can model the field more accurately using more detailed prescriptions. The downside to this, however, is that 
taking protein into account will reduce the number of times a particular condition is assigned the same nitrogen 
rate, reducing replication. Additionally, this will involve making the current prescription generation code more 
robust to input errors, and improving the current code. Finally, we hope to add a graphical user interface so as 
to improve usability. 
 
Ms. Rounds is developing a Deep Learning approach to optimizing yield. Deep Learning is a set of machine 
learning algorithms that attempt to model high level abstractions in a set of data. Deep Learning may take the 
form of a neural network, but it tends to be more involved, adding more layers and more calculations. A 
traditional neural network can only have about three layers before the training methods start to fail, and as such 
is limited in the abstraction it can model. A Deep Learning network (usually called a deep network) can have as 
many layers as we need. 
 
The particular Deep Learning method we intend to use involves using stacked auto-encoders. An example of this 
network is seen in Figure 5. Auto-encoders take in a set of inputs and transform that input, usually reducing 
dimensions. In the training process, we then attempt to convert the input back to its original form and use the 
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difference between the original and de-transformed inputs to modify the transformation. After training, when 
we use the auto-encoder, only the input-to-transformed input part is used.  When we stack the auto-encoders, 
higher auto-encoders in the stack tend to produce more abstracted output. For example, if we have an image 
that is being fed through the stacked auto-encoders, the first auto-encoder might identify lines in the image. The 
next auto-encoder might identify shapes and the auto-encoder after that might identify relationships between 
shapes. This makes stacked auto-encoders a powerful tool for accurate prediction in very complex systems.  As 
we will discuss later, traditional neural networks can predict protein with an accuracy of about 40% in the best 
case.  It is out hope that stacked auto-encoders will provide much higher accuracy.  Another reason to use a 
stacked auto-encoder is that they are actually a form of neural networks, thus so we can re-use much, though 
not all, of the code for the traditional neural network, speeding up development time. 

 
 
 
 
One of the other issues we have faced is multi-scale spatial data. For example, if there are 800 locations in a field 
where protein data is collected, and 14,000 locations where yield data is collected, there is no one-to-one 
relationship between yield and protein data collection locations. 

Figure 5: Example of a 
stacked auto-encoder. 
Inputs feed into a layer, 
and get transformed as 
they go into the next 
layer (also reducing the 
dimensions). Then, in 
order to make sure the 
transformation works 
the way we want, we try 
to reconstruct the 
original input. The 
difference between the 
original and 
reconstructed input is 
used to modify the 
transformation and 
make it better. 



 
Figure 6: Average R-squared values for different network types. Protein and Yield networks take in different amounts of information and 
must be trained differently, although we plan to modify this in the future. 
 
However, Dr. Sheppard and Ms. Rounds are developing a method of sampling points that will allow us to deal 
with this type of data. This method groups yield and protein data into cells. Then for each yield or protein point 
in a cell, a point in another cell is selected (there are a number of ways to select points that Dr. Sheppard and 
Ms. Rounds are developing) and used as one of the inputs for the original cell in either the traditional neural 
network or the stacked auto-encoders. This allows us to both capture information about the space surrounding 
a point, and allows us to relate points with different information that occur in different densities across a field. It 
could also allow us to increase the amount of data available for constructing and assessing networks.  

Finally, using the traditional neural network developed last quarter, Ms. Rounds has run computation 
experiments to identify whether a neural network outperforms a linear regression strategy for yield 
optimization. The results show that a neural network is far more accurate at predicting yield than a linear 
regression approach, and usually recommended applying more nitrogen than the linear regression approach. 

A neural network is a collection of simple computing units, sometimes called nodes or neurons, connected by 
directed links, which approximates a function. Each node, or neuron, approximates the function by first 
calculating the weighted sum of its inputs, then applying an activation function to derive its output. The ability of 
the network to approximate the function is dependent on the number of layers in the network. The networks 
developed during this quarter have the potential to exploit spatial information in the field in order to more 
accurately predict yield. 
 
In our analysis, we compared our neural network approach to a linear regression model. To compare linear 
regression and neural network models, we used a measure called the Coefficient of Determination (or R2).  This 
measure represents the amount of variation in the data that can be explained by a particular model. We 
selected the neural network with the best average R2 values for protein, as protein R2 values were universally 
lower than yield R2 values. The network that we selected had an R2 value for protein of 13.3%. 
 



 
Figure 7:  R-squared values for linear regression and a neural network.  Negative R-squared values mean that the model explains less 
variation than a model that only outputs the average value (in other words, a model that fits a horizontal line). 
 
Once we had selected a neural network model, we then compared the results to the linear regression model 
using a different field.  Interestingly, on a different data set (different field, different farm), the R-squared values 
for the neural network for protein were much higher, with an average R2 value of 39.8%. This is almost three 
times the initial R2 values. The neural network always had higher R2 values than the linear regression model.  
Once we had compared the prediction accuracy of each model, we also used the models to predict what would 
have happened if different nitrogen rates had been applied. All other variables were kept constant. We also 
examined the amount of nitrogen that each method recommended based on a linear representation of the 
expected price of winter wheat.  The linear regression model always selected applying no nitrogen. The neural 
network often applied fairly low amounts of nitrogen in general, but over much of the field, the network 
recommended applying no nitrogen. Both of these models were compared to the actual average nitrogen 
applied this year and a constant nitrogen application rate of 45 pounds of nitrogen per acre. 
 

 
Figure 8: Average amount of nitrogen recommended by each method. 
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Finally, we compared the net return for the field, given a linear representation of winter wheat prices. We found 
that the linear regression model reported much higher average net returns than the neural network model. This 
is potentially due to the lower accuracy of the linear regression model, which appears to overestimate yield for a 
field. The neural network, although far more accurate, reported slightly lower average yield than the actual 
yield. The net return from the nitrogen optimizations from both the neural network model and the linear 
regression model was higher than the net return from the fixed rate method of nitrogen application. This means 
that although the linear regression model and the neural network model both misestimate the net return for a 
given field, both methods suggest that variable rate nitrogen application improves net return. 
 

 
Figure 9: Average predicted net return for a field. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel Services:  $41,372.75 
• Total Operations:  $10,845.05 

 
3) 41W228 – Principal Investigator: Clem Izurieta; Email: clem.izurieta@gmail.com  

Co-investigator: Rob Payn 
 
Progress towards milestones 
Payn and Izurieta are managing the team focused on design and implementation of the data management and 
workflow technology.  The underlying software for data management has been named the Object Oriented 
Environmental Data System (OOEDS).  The system is based on state-of-the-art “NoSQL” database technologies, 
and will handle transfer and storage of digital information for the data import, model calibration, experimental 
design, yield optimization, and application prescription phases of OFPE process. 
 
There has been one new hire to the team managed by Payn and Izurieta during the past quarter (November-
January). Undergraduate student Louis Solana was hired to document the existing technology and API to facilitate 
its transition at a latter point in time.  Further, the documentation will have a tutorial component to aid developers 
of the OOEDS API.  Mike Trenk continues to work as a classified employee pending his official admission into the 
CS MS program. 
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The larger team, including Pol Llovet, Thomas Heetderks, Seth Kurt-Mason, and Michael Trenk (and occasionally 
Nick Silverman and Phillip Davis), meet every other week to track project progress and address the shifting 
priorities inherent in a research and development project. MSU’s “Box” cloud service is being used as a central 
document repository for the project, and a “Github” service is being employed to provide centralized management 
of code organization and revision during software development. 
 
The last quarter saw progress on the following activities: 
 
1. OOEDS Data Model 
The abstract schema of the data model to provide new features necessary for data input, optimization, and 
prescription workflows (see figures 1 and 2) is completed. Minor modification of the base schema may occur in 
the future, if limitations of the original model are discovered. [Done]  

 
Specific objects in the schema will continue to be added and evolve through the life of the project.  The schema is 
designed to be flexible to allow new data types to be added, as required by new datasets or data relationships 
used in the agronomic models.  For example, we are currently designing specific objects to handle collated data 
structures necessary to aggregate and collate data for controlling variables for the yield and protein agronomic 
models. [Ongoing] 

 
Data Schema 
• Refactored references to geoJSON features from Entities to bring the way we store attribute 

information for those features into better alignment with the way we do it elsewhere in the data 
model.  

• Changed where measurementContext information (average, maximum, minimum) is stored. 
Previously, measurementContext was an attribute of Properties. Now, it is associated with 
Evaluations in much the same way that SpaceTimeContext information is. Each Evaluation has a 
measurementContext.  

• Added several Model subclasses to accommodate different data types. Subclasses now include: 
featureModels, timeSeriesModels, and rasterModels. The model type helps describe the logical 
grouping of the data into forms typically encountered in the OFPE project.  

• Adding models required additional evolution and property types for fertilizer costs, soil types, NDVI 
data, weeds occurrence mapping data, photo points, crop sales, and farm operations costs.  

• Added a versionTimeContext to keep track of quality assurance/quality control (QAQC) activities that 
result in adjustments to metadata.  

• Added several Activity subclasses required to generate the new Evaluation types discussed above: 
terrainAnalysis, weedMapping, nitrogenTreatment, instrumentCalibration, farmOperations, QAQC. 

• Added two new sub-classes of Agent: manufacturer and laboratory 
 
2. OOEDS Web Interface 

• Prototypes have been developed for an open-standard authentication mechanism (OAuth) using a web 
development framework (Flask) to provide security for access to the MongoDB database.  This 
authentication system will be installed on the production server and will be used with MongoDB’s user 
database system will to manage data security. [In Progress] 

- Finished work on fine-tuning configuration on MongoDB cluser 
- flask/nginx SW configuration on mredi-api server 
- security & api design & development 
- prepared & presented PI demonstration 
- currently researching web UI technologies for OFPE client use 
- working on installing and configuring SW on MREDI servers 



- working on building OFPE/OOEDS API 
- working on building OFPE client 

• Defining JSON spec for communication between server and client tools. [Done] 
• Implementing OOEDS Java (and JavaScript) client, getting it working with OOEDS ReST API. These are being 

pulled into two separate ReST Layers [In Progress] 
• Prototyping high level query language for exporting data back out of database [In Progress] 
• Redesigning OOEDS Rest API to be a one-to-one implementation of the data model. (All classes have a 

corresponding rest endpoint) [In Progress] 
• Moving security into OFPE Layer, which acts as a proxy to the OOEDS Rest API. [In Progress] 
• Began the development of the database agnostic OOEDS Java Library.  This library is an important 

component for organizing our code base, and will allow for much more rapid development of software 
using the OOEDS data model in the future. [New] 

• Exploring the Open Ag Data Alliance standard for possible incorporation into API design. [New] 
• Exploration on UI technologies for possible incorporation into UI design. [New] 

 
3. Workflow software products (in order of current priority): 

3.1 Yield Editor Data Input [In Progress] 
• Based on the data input files from the Yield Editor software, we have defined the structure of 

the configuration file necessary to input data to the database, and implementation and 
testing of the code is well under way. [In Progress] 

• A Python prototype was completed and will be used moving forward to test functionality 
quicker.  It can serve as a staging language before full design in Java. It will help us understand 
the types of features in the OOEDS library. [Done] 

o Currently Integrating yield editor import python code into OOEDS rest api [In 
Progress] 

• The re-definition of the OOEDS Library using Java is forcing additional testing/development. 
[In Progress] 

• A prototype with a GUI will be demoed to the greater team [In Progress] 
[Done] 

o Developed Python script for reading YieldEditor data CSV output files and writing 
data into MongoDB 

o Identified query parameters necessary for retrieving harvest data from MongoDB to 
enable optimization modeling/workflows 

o Identified table structures and data formats required for prescription data export 
files 

o Began work to develop Gherkin/Cucumber scripts to support documentation and 
automated tests. 

 3.2 Data rectification workflow [Planning] 
• We have recently identified a critical step in the process for preparing data for the 

optimization process.  Data for independent variables need to be sampled at locations that 
correspond to the grain yield and protein response variables.  The resulting collated datasets 
are then used to feed the model selection, calibration, and optimization steps of the 
optimization work flow.  We are working on the software and data model additions necessary 
to import and query these collated datasets. 

 3.3 Optimization [In Progress] 
• The fundamental activities and sequences to support the workflow have been defined in 

design documentation.  Queries for optimization workflows are a primary source of case 
studies for development of the OOEDS library (see above); thus progress on these workflow 
will parallel progress on the library implementation. 



• We have started implementation of a prototype for querying data for optimizations from the 
database in collated form (see above), and returning the results of optimization with 
provenance metadata back into the database. 

3.4 Prescription [Planning] 
• No progress this quarter, but we will be starting the design process for this workflow soon, 

once the design of the optimization workflow is complete and in the process of being 
implemented.  
 

4. Manuscript  
We are actively working on developing a manuscript for an environmental informatics journal (e.g. 
Environmental Monitoring and Software).  The topic of the manuscript will be to introduce an extensive 
objective oriented data model suitable for storing environmental data in NoSQL (or object-oriented) databases.  
Our goal is to have a manuscript ready for submission by the end of Spring semester.  Rob Payn, Seth Mason and 
Clem Izurieta are meeting on a bi-weekly basis to develop this manuscript.  [In Progress] 
 
Figures 

 

Figure 1.  Executive Level Data Model 



 
Figure2. Each component describes an entire subsystem 
 

 
Figure 3.  Software Architecture 



 
Figure 4. Example of potential GUI functionality 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel:  $87,952.63 
• Total Operations:  $33.56 

 
4) Industry Match - Dr. Nick Silverman (Adaptive Hydrology) in collaboration with Dr. Kelsey Jencso (UM) 
 
Progress towards milestones 
The Montana Climate office continues to monitor weather data coming in from the MSU Research Centers. 
Adaptive Hydrology has continued to maintain and monitor weather stations at the four OFPE participant farms 
to determine their ability to sustain data output through winter conditions. At this time, all weather stations are 
up and running and connected to online servers for data storage and viewing. Continued development with the 
Montana Climate Office on hosting and accessing weather data, and communications with participant farmers. 
The data are now fully accessible online and can be visualized and downloaded from the Montana Climate Office 
website. Adaptive Hydrology has also continued to support the acquisition and organization of remotely sensed 
field data using Google Earth Engine for use in predictive modeling. In addition, Adaptive Hydrology has 
supported the development of a non-linear statistical model and a Bayesian probabilistic statistical model. 
Finally, Adaptive Hydrology has continued to attend all meetings and presentations either in person or remotely 
via video conferencing. 
 
 
Durum Quality subproject of the Agriculture MREDI project 
41W221 – Principal Investigator: Mike Giroux; Email: mgiroux@montana.edu 
 
Progress towards milestones 
Our focus in this quarter has been on analyzing field trial data from the 2016 durum trials conducted across the 
state and of preliminary yield trials. The primary new breeding populations listed previously were advanced 
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another generation in the greenhouse and are on track to be in the field in 2017.  These populations were 
created by crossing the top cultivars from across different durum growing regions.  We are currently growing F4 

plants and one head from each plant will be harvested in spring of 2017 and threshed independently.  F5 seeds 
from each selected head will be planted in a short row in Bozeman spring 2017.  The rows with the best 
agronomic properties will be harvested and evaluated for protein and semolina color from which selections will 
be made for single row 2018 yield testing.  Promising lines from 2018 field tests would then be tested in multiple 
locations in 2019 with high yielding lines also advanced to product quality testing. 
 
Our additional breeding materials that emphasize integration of the low cadmium trait are currently growing in 
AZ.  We will travel to AZ when they are mature and do head selections.  Selected heads will be harvested and 
brought back to Bozeman where they will be bulk threshed, seeds sieved to remove smalls, and planted in 
spaced rows in Bozeman spring 2017 for further selection.  
 
2016 Experimental durum breeding material evaluation and selection 
As we reported in our last quarterly report, we identified a small number of durum lines from crosses with 
adapted and unadapted parents that individually have high yield, increased pasta firmness and the low cadmium 
trait.   We will choose a small subset of these lines to be grown in the MT intrastate trial in 2017.   
 
State Durum Trial 
An intrastate durum trial was conducted the summer of 2016 at Bozeman (Giroux), Churchill (Northern Seed, 
LLC), Conrad (Northern Seed, LLC and WTARC), Moccasin (CARC), Havre (NARC), and Sidney, MT (EARC).  The 
trial encompassed 9 elite cultivars and 6 experimental lines developed at MSU.  Yield and agronomic data was 
recorded for all stations and sub-samples were sent to the USDA in Fargo for quality analysis, which included all 
seed characteristics along with milling traits and semolina color traits.   
 
METHODS: 
Six advanced experimental durum lines and nine elite durum varieties were tested at five Montana State 
University Agricultural Experiment Centers, two locations maintained by Northern Seed, LLC, and the North 
Dakota State University Williston Research Extension Center.  Rainfed experiments were grown in Havre, MT 
(MSU-NARC), Sidney, MT (MSU-EARC), Conrad, MT (MSU-WTARC and Northern Seed, LLC), Moccasin, MT (MSU-
CARC), and Williston, ND (NDSU-WREC).  Irrigated trials were grown in Bozeman, MT (MSU-Post Agronomy 
Farm), Churchill, MT (Northern Seed, LLC) and Sidney, MT (MSU-EARC). There were three replicates of each 
line/variety grown at each location, all seed was treated with CruiserMaxx Vibrance for Cereals (Syngenta) (5 fl 
oz/100 lb), and Mountrail was considered the check variety.  The individual research centers/cooperators 
provided agronomic data and grain sub-samples from the three replicates per line per location were bulked and 
submitted to Linda Dykes (USDA-ARS, Fargo, ND) for analysis of seed traits, milling and semolina quality, and 
mixing strength. Overall statewide agronomic performance can be found in Table 1. 

 
AGRONOMIC RESULTS SUMMARY: 
Across all nine locations, encompassing both irrigated and rainfed trials, there was no statistical significant 
differences for all traits based on ANOVA.  However, numerically the highest yielding line was MT112219 (67.0 
bu/ac) which also had the highest test weight (60.2 lb/bu).  Mountrail had the lowest yield (58.0 bu/ac) and test 
weight (55.5 lb/bu) (Table 1).  MT112219 and MT101717 were the shortest lines (27.2 and 27.9 in, respectively) 
and had the lowest grain protein (both 13.8 %), while Tioga had the highest protein (15.1 %) and was the tallest 
(32.7 in.).  
 
Under irrigated conditions at three locations there were no significant differences observed for any measured 
trait, however MT112219 numerically was the second highest yielding line (99.3 bu/ac) behind Carpio (101.9 
bu/ac), had the highest test weight (61.3 lb/bu), and was the shortest (31.3 in) (Table 3).  Under irrigation, 



MT112434 ranked the lowest for yield (86.6 bu/ac) and test weight (59.4 lb/bu) but the highest for protein (14.2 
%), while MT101717 ranked the lowest for protein (12.7 %). 
 
Under rainfed conditions no significant differences were observed between lines tested for heading date, yield, 
test weight, or protein content, however MT112219 ranked the highest for yield (50.8 bu/ac) and test weight 
(59.6 lb/bu) but the lowest for protein (14.1 %).  In 2015, MT112219 was also the top yielding line under rainfed 
conditions.  MT112219 was the shortest line (25.2 in) and was significantly shorter than the check Mountrail 
(29.3 in).  The lowest yielding line under rainfed conditions in 2016 was Mountrail (41.1 bu/ac) which also had 
the lowest test weight (53.3 lb/bu).  Tioga was the tallest cultivar (30.7 in) with the highest protein (15.5 %) 
under rainfed condition.   
 
QUALITY RESULTS SUMMARY: 
Grain quality results supplied by the USDA-ARS showed no significant difference for test weight, individual 
kernel weight, grain hardness, or grain protein based off ANOVA (Table 2).  Significant differences did exist for 
percent large kernels, percent small kernels, and kernel diameter.  Overall, MT101717 and MT112219 again had 
the largest test weights (61.2 and 60.9 lb/bu, respectively) while Mountrail had the lowest test weight (58.7 
bu/ac), though not significantly.  MT101717 had the smallest individual kernel weight (37.3 mg) which resulted 
in it having the largest percent of small kernels (13.8%) along with Mountrail (13.8 %).  Alzada had the largest 
individual kernel weight (44.2 mg) and kernel diameter (3.0 mm) which equated to it having the greatest percent 
of large kernels (77.0 %) and lowest percent of small kernels (5.1 %).  MT101717 and MT112219 had the lowest 
grain protein (13.8 % and 14.0 % respectively) while line MT112434 had the highest grain protein content 
(14.9%), although not significantly.  
  
After milling, no significant differences were detected for semolina milling yield, semolina brightness (L*), whole 
grain ash, semolina protein, or falling number (Table 3).   Significant differences did exist for semolina yellow 
color (b*), mixograph pattern, and semolina ash (Table 15).  MT112219 had the highest milling yield (63.7%) 
with its semolina having the lowest protein content (12.6%) and lowest brightness score (83.5) along with Alzada 
(83.5).  MT101717 had the lowest whole grain (1.4 %) and semolina ash content (0.57%) and the second lowest 
semolina protein (12.7 %).  Grenora had the lowest milling yield (61.7%), while Mountrail had the brightest 
(84.5) semolina and highest semolina protein (13.7%), though not significantly. Mountrail had significantly the 
least yellow semolina (24.9) while Joppa had the most yellow semolina (30.3).  All MT lines except MT101694 
had significantly more yellow (27.2-28.7) semolina than Mountrail.  Mountrail had significantly the lowest 
mixograph pattern score reflecting weak gluten with a score of 3.0 while Alzada had the highest mixograph 
pattern score of 6.9.  Mixograph pattern scores for all the experimental MT lines except MT101694 were 
significantly higher than Mountrail. 
 
Table 1. Agronomic means from 2016 intrastate durum trials all locations (n=9) and conditions. 

Line/Variety 
Heading 
(Julian)1 

Flowering 
(Julian)2 

Plant Height 
(in) 

Yield 
(bu/ac)3 

Test Weight 
(lb/bu) 

Protein 
(%)3 

Alkabo 174.7 188.8 32.1 59.7 57.9 14.7 
Alzada 172.6 188.0 28.4 62.7 58.2 14.8 
Carpio 176.3 188.8 32.3 65.7 59.0 14.8 
Divide 174.8 188.4 32.2 64.5 57.8 14.7 

Grenora 174.5 188.0 30.8 63.7 57.1 14.8 
Joppa 175.8 188.1 31.9 61.5 57.5 14.6 

Mountrail 175.3 187.7 31.4 58.0 55.5 14.9 
Silver 172.8 187.3 29.5 62.1 57.6 14.6 
Tioga 175.2 187.3 32.7 61.2 58.4 15.1 

MT101694 174.5 189.3 31.2 61.8 58.8 14.4 



MT101717 173.5 188.8 27.9 65.4 60.0 13.8 
MT112219 172.7 189.8 27.2 67.0 60.2 13.8 
MT112434 174.4 189.7 31.3 59.9 58.1 14.9 
MT112444 173.3 188.4 30.9 63.1 57.8 14.5 
MT112463 173.1 188.2 28.6 62.6 57.5 14.3 

Grand Mean 174.2 188.4 30.6 62.6 58.1 14.6 
CV (%) 3.0 3.6 15.4 41.6 9.3 15.2 

LSD (0.05) 7.1 13.8 4.3 25.5 5.2 2.1 
P-value NS NS NS NS NS NS 

1Data for five locations 
2Data for two locations 
3Reported on a 12% moisture basis 
NS = No significant difference based on ANOVA p<0.05 
Underline = Highest and lowest values 
 
Table 2. USDA-ARS seed quality means from all locations for 2016 intrastate durum trial. 

Line/Variety 

Test 
Weight 
(lb/bu)1 

Kernel 
Weight 

(mg) 

Large 
Kernels 

(%) 

Small 
Kernels 

(%) 

Kernel 
diameter 

(mm) Hardness 

 
 Protein 

(%)1 
Alkabo 59.4 40.5 57.0 10.8 2.8 74.7 14.6 
Alzada 59.2 44.2 77.0 5.1 3.0 76.4 14.8 
Carpio 59.9 40.8 64.8 8.1 2.8 77.3 14.7 
Divide 59.5 39.9 59.3 9.2 2.8 75.4 14.8 

Grenora 58.9 40.0 56.9 9.0 2.8 79.1 14.6 
Joppa 59.3 38.8 45.7 12.8 2.7 79.3 14.5 

Mountrail 58.7 39.3 45.9 13.8 2.8 74.8 14.5 
Silver 59.4 39.2 55.9 9.7 2.8 76.1 14.6 
Tioga 59.5 42.6 67.1 7.4 2.9 74.4 14.8 

MT101694 60.1 38.1 51.4 12.1 2.8 80.7 14.2 
MT101717 61.2 37.3 47.0 13.8 2.8 82.6 13.8 
MT112219 60.9 40.5 58.1 9.6 2.9 77.6 14.0 
MT112434 59.3 41.6 64.1 8.3 2.9 73.8 14.9 
MT112444 58.8 39.5 60.2 9.2 2.9 75.3 14.4 
MT112463 58.8 38.0 64.1 9.4 2.9 76.0 14.3 

Grand Mean 59.5 40.0 58.3 9.9 2.8 76.9 14.5 
CV (%) 3.1 10.9 34.5 45.8 5.7 8.9 12.4 

LSD (0.05) 1.7 3.9 18.1 3.8 0.2 6.3 1.7 
P-value NS NS 0.048 <0.001 0.031 NS NS 

1Reported on a 12% moisture basis 
NS = No significant difference based on ANOVA p<0.05 
Underline = Highest and lowest values 
 
Table 3. USDA-ARS semolina quality means from all locations for 2016 intrastate durum trial. 

Line/Variety 

Milling 
Yield 
(%) 

 Brightness 
(L*) 

Yellowness 
(b*) 

Mixograph 
pattern 

Whole 
grain 
ash 
(%)1 

Falling 
Number 

(sec) 

Semolina 
protein 

(%)2 
Semolina 
ash (%)1 

Alkabo 62.8 84.2 28.8 4.4 1.5 422.6 13.5 0.6 
Alzada 62.5 83.5 30.2 6.9 1.5 443.7 13.6 0.7 



Carpio 63.1 84.1 30.3 6.8 1.5 426.3 13.6 0.6 
Divide 62.9 84.5 27.0 4.7 1.5 429.9 13.5 0.6 

Grenora 61.7 84.4 28.5 4.8 1.5 430.3 13.5 0.6 
Joppa 62.5 84.0 30.3 6.4 1.5 422.3 13.3 0.6 

Mountrail 62.4 84.5 24.9 3.0 1.5 420.3 13.7 0.6 
Silver 62.9 83.9 26.5 5.4 1.5 416.6 13.5 0.6 
Tioga 63.7 84.2 28.7 5.6 1.5 418.1 13.6 0.6 

MT101694 61.7 83.7 26.5 4.0 1.4 412.4 13.2 0.6 
MT101717 61.8 83.7 28.7 4.8 1.4 440.7 12.7 0.6 
MT112219 63.7 83.5 27.2 5.4 1.5 422.3 12.6 0.7 
MT112434 62.5 83.9 28.1 5.9 1.5 437.8 13.7 0.6 
MT112444 61.9 83.6 28.7 6.1 1.5 442.6 13.3 0.7 
MT112463 62.0 83.6 28.3 6.7 1.6 435.9 12.9 0.7 

Grand Mean 62.5 84.0 28.2 5.4 1.5 428.1 13.4 0.6 
CV (%) 3.5 1.1 8.1 35.1 11.1 7.5 15.5 10.5 

LSD (0.05) 2.1 0.9 1.7 1.5 0.2 30.3 2.0 0.1 
P-value NS NS <0.001 <0.001 NS NS NS 0.002 

1Reported on a 14% moisture basis 

2Reported on a 12% moisture basis 
NS = No significant difference based on ANOVA p<0.05 
Underline = Highest and lowest values 
 
Northern Seed Durum Research Update (Dale Clark and Craig Cook) 
We are currently packaging seed for the N17 spring planting yield trials which will be planted at 5 locations in 
Montana (Bozeman, Conrad, Ft. Benton, Havre, and Scobey).  The purifications planted near Yuma in November 
are progressing nicely and the anticipated harvest is mid to late April.  The material harvested in Yuma will be 
cleaned, packaged and planted near Bozeman in early May to provide pure seed which will be the starting basis 
for variety increase and release over the next 2 years. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Equipment 

• We do not anticipate ordering any additional equipment for this project. 
 
Expenditures 

• Total Personnel:  $73,680.36 
• Total Operations:  $34,423.20 
• Total Equipment:  $70,994.00 

 
 
Wheat Stem Sawfly subproject of the Agriculture MREDI project  
41W222 – Principal Investigator: David Weaver; Email: weaver@montana.edu 
 
Progress towards milestones 
Bracon cephi. Previously, we characterized the effect of sugar availability on the longevity and egg load dynamics 
of this species. Here we report on the effect of flowering plant species on egg size in both species. As for 
responses to pure carbohydrates, the two native parasitoid species responded different to flower access.  In Fig. 
1 (below) the more abundant species, B. cephi, has eggs that are not statistically different in size at 10 days for 
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provisioned sucrose and flax, buckwheat and pea flowers. As previously reported this species resorbs eggs to 
live longer, which allows for more time to locate wheat stem sawfly larvae to parasitize. In Figure 1, there were 
no eggs left at 10 days for parasitoids that could access flowering wheat or alfalfa.  This is a bit surprising 
because the largest eggs are associated with peas, which may provide other sources of nutrients, but does not 
actually have nectar that is accessible for these small parasitoids.  The fact that the eggs are exhausted in wheat 
and alfalfa is also unexpected.  Neither would provide nectar, but these data suggest that this species must 
forage for carbohydrates in the field during their search for wheat stem sawfly larvae to parasitize in wheat. If 
they did not, they would be ecologically unsuccessful rather than being the more commonly encountered of the 
two species in wheat fields. 
 

 
Figure 1. Mean egg size (volume) at 10 days for Bracon cephi. All plant species were presented at the flowering stage.  The control is a 1 
molar sucrose solution provisioned daily. 
 
Bracon lissogaster. Previously, we also characterized the effect of sugar availability on the longevity and egg load 
dynamics of this species. Adding to the remarkable contrast to B. cephi, 10 day old females of B. lissogaster had 
the largest eggs when feeding on the control 1 molar sucrose, access to flowering alfalfa and flax produced 
slightly smaller individuals, while access to flowering wheat, peas and buckwheat actually produce the smallest 
eggs.  Although these sizes are different, there is less than 1mm3 difference between the mean values for egg 
size for the control and the mean values for buckwheat (Fig. 2).   The large egg for the control appear smaller 
than the large eggs from peas for B. cephi. 
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Figure 2. Mean egg size (volume) at 10 days for Bracon lissogaster. All plant species were presented at the flowering stage.  The control is 
a 1 molar sucrose solution provisioned daily. 
 
It is apparent that there is some greater metabolic stability provided by body reserves in the egg dynamics of the 
rarer B. lissogaster. There is no exhaustion of eggs on wheat or alfalfa like for B. cephi. 
 
Field data. From the field, have completed our assessment of weight of both the wheat stem sawfly and 
overwintering parasitoids from samples after the 2016 wheat harvest.  We are using the same paired fields of: 1) 
cover crop bordering wheat matched with 2) fallow bordering wheat, as well as: 3) the same paired fields of 
pulse crops bordering wheat matched with 4) fallow bordering wheat.  Postharvest wheat stubble was dissected 
to determine the presence of wheat stem sawfly and then the overwintering structures of both the pest wheat 
stem sawflies and the two parasitoid species were also dissected and weighed. The overwintering stages of the 
hosts and thus, the parasitoids are constrained by the food availability within the developing wheat stem.  As 
stated previously, the more robust (and higher yielding) wheat stems will produce larger wheat stem sawfly 
larvae which should, in turn, produce larger parasitoids.  
 
The weight of the overwintering stage of the wheat stem sawflies varied across location and also across adjacent 
field type, either cover crop, pulse or fallow (Figure 3). There were a small number of very large overwintering 
stage wheat stem sawflies adjacent to pulse at one location but weights of overwintering wheat stem sawflies 
for other pulse locations or other types of adjacent fields were variable and showed no consistent pattern. The 
weight of the overwintering stage of the braconid parasitoids also varied across location and across adjacent 
field type, either cover crop, pulse or fallow (Figure 4). 
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Figure 3. Box plots of weights of the wheat stem sawfly overwintering stage for all locations. 
 

 
Figure 4. Box plots of weights of the overwintering stages of the parasitoid for all locations. 
 
These same dissections also provided data on wheat stem sawfly and parasitoid numbers.  There were seven out 
of 11 fields where wheat stem sawfly infestation was greater than a mean of 15%, with the greatest infestation 
of approximately 60%.  In five of these seven fields wheat stem sawfly infestation was greater adjacent to the 
fallow fields. In the other two, infestation was greater than adjacent to fallow for one cover crop field and one 
field of pea. Of these locations mean parasitism was greater at 4 locations which were characterized by 
noticeable differences, and by as much as means of 17% adjacent to flowering pea versus 0.5% adjacent to the 
paired fallow field or 6% adjacent to a cover crop versus 0.8% adjacent to the paired fallow field. In the other 



pairings, mean parasitism was too low to make meaningful comparisons.  This means that infestation and losses 
due to wheat stem sawfly can also be quite high in some locations, despite the presence of the flowering crop.  
This suggests that the populations of parasitoids could increase in these areas, but it also indicates that planting 
flowering crops does not guarantee that parasitoids will impact wheat stem sawfly numbers, nor are wheat stem 
sawfly populations reduced by simply breaking the wheat monoculture by incorporating rotations or cover 
crops. 
 
In late March, the fields will be sampled again to collect stubble for dissection to assess changes in overall 
mortality and size for both the wheat stem sawflies and the parasitoids.  Parasitoids overwinter above the soil 
surface in the standing residue and invest significant body reserves in production of anti-freeze proteins and 
glycerol.  The wheat stem sawfly is associated with the crown of the wheat stubble and does not produce as 
much cryoprotectant material. We expect changes in mean weight before metamorphosis to be quite 
informative. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel:  $17,294.38 
• Total Operations:  None to date 
 

 
Weed Imaging/Pulse Crop Herbicide subproject of the Agriculture MREDI project  

1) 41W217 – Principal Investigator: Prashant Jha; Email: pjha@montana.edu 
PULSE CROP HERBICIDE EVALUATION 

 
Progress towards milestones 
 
1. Weed Control in Pulse Crops 
During this grant period, we focused on dissemination of results obtained from this research to Montana 
clientele. Findings and recommendations were presented during MSU Research Center Field Days, MABA, and 
winter grower meetings across Montana. The findings of this research will be available to the growers through 
extension publications as “Montana Guide” or “MSU Research Bulletin”. Based on the results obtained from this 
project, we were able to initiate collaborative work with chemical industry and Montana Pulse Commodity 
group for prioritizing pulse weed control research and registration of new herbicides and optimizing application 
timing for weed control in pulse crops (pea, lentil, and chickpea). This research will significantly contribute to 
increased adoption and acres under pulse crops in Montana. 
 
2. Light Activated Sensor Controlled (LASC) WeedSeeker Sprayer for Precision Weed Control 
During this grant period, we built a tractor-mounted 30-feet spot sprayer fitted with 30 WeedSeeker units. This 
technology will be tested during summer of 2017 in grower fields across Montana. The precision sensor units are 
fitted with TeeJet 6502 flat-fan nozzles spaced 12” apart, calibrated to deliver 20 gal/acre of herbicide spray 
solution. A pull-type sprayer will be used with a 300-gallon tank. The LASC spot sprayer will be compared for 
weed control with a conventional broadcast sprayer calibrated to deliver the same volume of herbicide spray 
mixture. 
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Based on our field evaluations (2015-2016) of LASC technology (using a 16 feet ATV-mounted sprayer with 16 
sensor units) in no-till fallow and post-harvest wheat stubble, weed control efficacy with LASC sprayer was 
consistent with the conventional broadcast sprayer. LASC sprayer reduced the herbicide (plus adjuvant) usage 
by up to 70% of the amounts used with a conventional broadcast sprayer.  The herbicide savings were mainly 
due to savings in the spray volume using LASC sprayer vs. broadcast application. Based on results from the field 
research in 2015-2016, use of LASC sprayer reduced herbicide costs per acre by up to 70% compared with the 
conventional broadcast application for the herbicide programs tested in chemical-fallow/wheat stubble.  This 
technology has proven accuracy in weed detection/sensitivity and spot spray (weed heights from 1 to 6 inches) 
at operating speeds of 10-12 mph. 

 
I continue to collaborate with Dr. Joe Shaw (MSU Optics, Department of Electrical Engineering) on the 
hyperspectral imaging (MREDI subproject) to detect herbicide-resistant weeds in-crop (report presented by Dr. 
Joe Shaw). 
 
Educational Activities 
• Presentation on hyperspectral imaging to detect herbicide-resistant weeds in-crop. Weed Science Society 

of America Annual Meeting, February 6-9, 2017.  
• Presentation on advanced optical sensor-based hyperspectral imaging and spot spray technologies for 

precision weed control. Malt Barley and Sugar beet Symposium, Billings, MT, January 10-11, 2017. 
• Presentation on mitigating herbicide carryover and introducing new weed control options in pulse crops in 

Montana. CHS Grower Meeting, Malta, MT, January 9, 2017. 
• Presentation on precision weed control technologies in Montana agriculture. MSU-Extension Crop and Pest 

Management Convention, Bozeman, MT, January 3, 2017. 
• Presentation and demonstration on precision weed control technologies, MSU-SARC, Field Day, Huntley, 

MT, June 28, 2016.  
• Presentation on weed control options for herbicide resistance management in pulse crops in eastern MT, 

MSU Eastern Agricultural Research Center Field Day, Sidney MT, June 24, 2016.  
• Presentation on fall-applied soil residual herbicides in wheat stubble and rotational crop safety and weed 

control in pulse crops, Northern Agricultural Research Center Field Day DRC-NARC, Havre, MT, June 22, 
2016.  

• Presentation on management of glyphosate-resistant weeds in wheat-pulse rotation, Divide County Crop 
Improvement Meeting, Crosby, ND, December, 2016.  

 
  

Figure 1: WeedSeeker sprayer with 16 LASC units for 
precision weed control in chemical fallow (2016). 



Media Contribution 
Precision agriculture and site-specific weed management using optical sensors and hyperspectral imaging. 
Montana Ag Live– Broadcasted by Montana PBS Live TV Show (1 hour). October 16, 2016. 
 
Hiring 
The following people continue to work on this project:  

• Dr. Vipan Kumar, Postdoctoral Research Associate 
• Mr. Shane Leland, Research Technician at SARC, Huntley 
• Mr. Charlemange A. Lim, PhD student 

 
Equipment 

• The purchase of a growth chamber is under process and will be completed by the end of this month. 
 
Expenditures 

• Total Personnel:  $46,156.76 
• Total Operations:   $105.26 

 
2) 41W216 – Principal Investigator:  Joseph Shaw; Email: jshaw@montana.edu 

PRECISION WEED CONTROL USING ADVANCED OPTICS AND SENSOR-BASED TECHNOLOGIES 
 
Progress towards milestones 
During this Quarter 6, we successfully addressed milestone #4, to submit a proposal with an industry partner for 
technology commercialization. We now have formal approval to proceed with NWB Sensors, Inc., a Bozeman 
company, for a study of commercialization paths for the hyperspectral weed-discrimination study reported here.  
Hyperspectral weed imaging 
Development on a machine-learning classification algorithm to distinguish between dicamba-resistant and 
susceptible Kochia is progressing. The resistant Kochia strains have been identified in Montana fields and pose 
a significant and potentially expensive problem for Montana farmers. The current tests are based on 
hyperspectral data of different strains of weeds placed amid crops during lighting conditions ranging from 
direct sunlight to overcast diffuse light. 
 
To implement machine learning, different spectral features and combinations of these spectral features are 
being tested to map the locations of different strains of Kochia. Currently, the parameters include the NDVI of 
each pixel, nine selected wavelengths from previous greenhouse studies and parameters to fits of specific 
features of the spectra. 
 
Figure 1 shows a sample spectrum of barley with a skewed Gaussian fit applied between 510 and 660 nm and 
an arctangent fit applied between 660 and 790 nm. Figure 2 shows the gradient of the same spectrum, a 
skewed Gaussian fit between 475 and 565 nm, a skewed Gaussian fit between 580 and 655 nm and a Voigt 
profile fit between 665 and 785 nm. In each case, parameters such as height, width and center of the fit (in 
nm) are used as parameters for the machine-learning classifiers. The different fits and spectral ranges were 
chosen based on a hyper-parameter search to minimize the chi-square values over distinct features in the 
spectra.  
 
Lastly, we have begun exploring principal component analysis to reduce each spectra from 240 dimensions to 
6 to examine information useful for separating the Kochia strains, which may be hidden in the dimensionality 
of the data.   
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Commercialization and Dissemination  
The principal investigator of this subproject gave an invited presentation at the annual meeting of the Montana 
Grain Growers Association at Great Falls, Montana, in early December 2016.  This presentation was extremely 
well received and generated significant discussion that provided useful insight into how growers would like to 
use the technology. Just before this presentation, a disclosure of the weed-discrimination technology was 
submitted to the Montana State University Technology Licensing Office and submitted by that office as a 
provisional patent application involving co-inventors from the MSU Colleges of Engineering and Agriculture. 
Related to this step, formal approval was gained to proceed with a commercialization study with NWB Sensors, 
Inc., a Bozeman, Montana company.  Efforts are underway to launch that study during the upcoming quarter.  

 
Figure 1. Barley reflectance spectrum with skewed Gaussian fit for 510-660 nm and arctangent fit for 660-790 nm. 
 

 
Figure 2. Gradient of the barley spectrum with a skewed Gaussian fit for 475-565 nm, a skewed Gaussian fit for 580-655 nm and a 
Voigt profile fit for 665-785 nm.  
 
Hiring 
The following people continue to work on this project (and continue to collaborate with Dr. Prashant Jha of the 
MSU Southern Agricultural Research Center): 

• Dr. Joseph Shaw: subproject director (receiving partial summer salary)  



• Mr. Bryan Scherrer: Ph.D. student 
• Mr. Andrew Donelick: Ph.D. student (transitioned to a new research group but is working still with us on 

plans for a publication reporting the preliminary results he helped us achieve)  
 
Equipment Procurement 

• We do not anticipate ordering any additional equipment for this project.  
 
 Expenditures 

• Total Personnel:  $25,869.69 
• Total Operations:  $9,718.34 
• Total Equipment:  $16,716.00 

 
 
Film Production for the Agriculture MREDI Grant 
41W218 – Organizer:  Eric Hyyppa; Email: eric_hyppa@montanapbs.org 
 
Progress towards milestones 
Montana PBS filmed additional interviews and pulse crop seedlings/fields in December.  They began editing and 
color correcting the footage and developed a short video that can be viewed at https://youtu.be/7kvXqS8YiHo. 
 
Equipment Procurement 

• We do not anticipate ordering any additional equipment for this project.  
 
Expenditures 

• Total Personnel:  $6,617.87 
• Total Operations:  $7,283.95 
• Total Equipment:  $7,999.00 

 
 
Economic analysis subproject of the Agriculture MREDI project  
41W219 – Principal Investigator:  Anton Bekkerman; Email: anton.bekkerman@montana.edu 
 
Progress towards milestones 
None to report in Quarter 6. 
 
Hiring 

• No additional hires in Quarter 6. 
 
Expenditures 

• Total Personnel:  $42,527.06 
• Total Operations:  $11,613.00 

 
 
Participatory research network subproject of the Agriculture MREDI project  
1) 41W224 – Principal Investigator: George Haynes; Email: haynes@montana.edu 
 
Progress towards milestones 
Dr. Haynes and his cohorts are currently scheduling interviews with collaborators for early March. 
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Hiring 
• No additional hires in Quarter 6. 

 
Expenditures 

• Total Personnel:  $14,887.67 
• Total Operations:  None to date 

 
2) 41W223 – Principal Investigator: Colter Ellis; Email: colter.ellis@montana.edu  
 
Progress towards milestones 
The past quarter has largely been devoted to analysis of the interview data we collected with 37 producers from 
throughout the state. We have hired an undergraduate research assistant to help with data management. She is 
also being trained in qualitative data analysis.  
 
While findings are still very preliminary, it is clear that those interviewed for this project hold a mix of positive 
and negative attitudes towards MSU research and technology development. Negative attitudes are clustered 
around the perceptions that MSU faculty and research are disconnected from the practical needs of producers, 
not locally applicable to producers’ immediate climate, and that proposed technologies and techniques do not 
adequately address real-world concerns.  
 
While participants were critical of MSU, data also indicated that the university enjoys a strong overall 
reputation. Participants expressed overwhelmingly positive attitudes towards the university as a whole and 
towards specific faculty members who were praised for their accessibility and willingness to help producers 
address concerns.  
 
As discussed in our presentation during the Celebrate Agriculture conference, hosted by the Department of 
Agricultural Economics and Economics, our data suggest a more collaborative approach to technology 
development would increase stakeholder interest in adoption. 
 
Hiring 

• Greer Wagner, undergraduate research assistant 
 
Expenditures 

• Total Personnel:  $249.42 
• Total Operations:  $7,429.53 
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